A public bacterial mutagenicity database was classified into 2-D structural families using a set of specific algorithms and clustering techniques that find overlapping classes of compounds based upon chemical substructures. Structure-activity relationships were learned from the biological activity of the compounds within each class and used to identify rules that define substructures potentially responsible for mutagenic activity. In addition, this method of analysis was used to compare the pharmacologically relevant substructure of test compounds with their potential toxic substructures making this a potentially valuable in silico profiling tool for lead selection and optimization.
View Article and Find Full Text PDFThe routine use of high-throughput screening (HTS) systems in the drug discovery process has resulted in an increasing need for fast, reliable analysis of massive amounts of data. A new automated multidomain clustering method that thoroughly analyzes screening data sets is used to examine both the active and the inactive compounds in a well-known, publicly available data set based on primary screening. Large and small compound sets that defined both chemical families and potential pharmacophore points were discovered.
View Article and Find Full Text PDF