Publications by authors named "Ruth F Ketley"

To ensure the integrity of our genetic code, a coordinated network of signalling and repair proteins, known as the DNA damage response (DDR), detects and repairs DNA insults, the most toxic being double-strand breaks (DSBs). Tudor interacting repair regulator (TIRR) is a key factor in DSB repair, acting through its interaction with p53 binding protein 1 (53BP1). TIRR is also an RNA binding protein, yet its role in RNA regulation during the DDR remains elusive.

View Article and Find Full Text PDF

Gene expression can be regulated by transcriptional or post-transcriptional gene silencing. Recently, we described nuclear nascent RNA silencing that is mediated by Dicer-dependent tRNA-derived small RNA molecules. In addition to tRNA, RNA polymerase III also transcribes vault RNA, a component of the ribonucleoprotein complex vault.

View Article and Find Full Text PDF

RNA transcribed at DNA double-strand breaks (DSBs) contributes to accurate DNA repair. Here, using the repair factors 53BP1 and TIRR as examples, we combine the fluorescence in situ hybridization (FISH) and proximity ligation assay (PLA) techniques to determine protein proximity to DSB-transcribed RNA. In this FISH-PLA protocol, we detail steps for designing DNA probes and image analysis using CellProfiler™ software.

View Article and Find Full Text PDF

Tudor-interacting repair regulator (TIRR) is an RNA-binding protein and a negative regulator of the DNA-repair factor p53-binding protein 1 (53BP1). In non-damage conditions, TIRR is bound to 53BP1. After DNA damage, TIRR and 53BP1 dissociate, and 53BP1 binds the chromatin at the double-strand break (DSB) to promote non-homologous end joining (NHEJ)-mediated repair.

View Article and Find Full Text PDF

In situ Proximity Ligation Assay (PLA ) can be used to detect the close proximity (less than ~40 nm) of two biological molecules of interest in cells. Here we report the application of this method for the specific detection of R-loop interacting proteins and RNA modifications in close proximity to R-loops in non-damage and ionizing radiation (IR) induced DNA damage conditions.

View Article and Find Full Text PDF

The mechanisms by which RNA acts in the DNA damage response (DDR), specifically in the repair of DNA double-strand breaks (DSBs), are emerging as multifaceted and complex. Different RNA species, including but not limited to; microRNA (miRNA), long non-coding RNA (lncRNA), RNA:DNA hybrid structures, the recently identified damage-induced lncRNA (dilncRNA), damage-responsive transcripts (DARTs), and DNA damage-dependent small RNAs (DDRNAs), have been shown to play integral roles in the DSB response. The diverse properties of these RNAs, such as sequence, structure, and binding partners, enable them to fulfil a variety of functions in different cellular contexts.

View Article and Find Full Text PDF

Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmau7p3hv931sl807henrkugr2f66d7j3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once