Hypoxia leads to the upregulation of a variety of genes mediated largely via the hypoxia inducible transcription factor (HIF). Prominent HIF-regulated target genes such as the vascular endothelial growth factor (VEGF), the glucose transporter 1 (Glut-1), or erythropoietin (EPO) help to assure survival of cells and organisms in a low oxygenated environment. Here, we are the first to report the hypoxic regulation of the sperm associated antigen 4 (SPAG4).
View Article and Find Full Text PDFThe Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von Hippel-Lindau" (VHL), the gatekeeper of renal tubular growth control.
View Article and Find Full Text PDFHypoxia-inducible factors (HIF1α/HIF2α) are key transcription factors that promote angiogenesis. The overexpression of degradation-resistant HIF mutants is considered a promising pro-angiogenic therapeutic tool. We compared the transcriptional activity of HIF1α/HIF2α mutants that obtained their resistance to oxygen-dependent degradation either by deletion of their entire oxygen-dependent degradation (ODD) domain or by replacement of prolyl residues that are crucial for oxygen-dependent degradation.
View Article and Find Full Text PDF