Publications by authors named "Ruth Del-Prado"

Asexual species with vegetative propagation of both symbiont partners (soredia) in lichens may harbor lower species diversity because they may indeed represent evolutionary dead ends or clones. In this study we aim to critically examine species boundaries in the sorediate lichen forming fungi Parmotrema reticulatum-Parmotrema pseudoreticulatum complex applying coalescent-based approaches and other recently developed DNA-based methods. To this end, we gathered 180 samples from Africa, Asia, Australasia, Europe, North and South America and generated sequences of internal transcribed spacer of nuclear ribosomal DNA (ITS) and DNA replication licensing factor MCM7 (MCM7).

View Article and Find Full Text PDF

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi.

View Article and Find Full Text PDF

Premise Of The Study: In spite of the recent advances in generic and species circumscriptions and in recognizing species diversity in lichen-forming fungi, the timing of speciation and the factors that promote diversification in lichens remain largely unexplored. We used brown parmelioids as a model to assess the timing of divergence and explore the impact of geological and climatic events on lineage divergence and diversification in lichenized fungi. Additionally, to clarify the phylogenetic position of the species currently placed in Melanelia disjuncta group, we evaluated the taxonomic status and phylogenetic relationships within Parmeliaceae.

View Article and Find Full Text PDF

Biogeographical studies of lichens used to be complicated because of the large distribution ranges of many species. Molecular systematics has revitalized lichen biogeography by improving species delimitation and providing better information about species range limitations. This study focuses on the major clade of tropical parmelioid lichens, which share a chemical feature, the presence of isolichenan in the cell wall, and a morphological feature, microscopic pores in the uppermost layer.

View Article and Find Full Text PDF

The species delimitation in fungi is currently in flux. A growing body of evidence shows that the morphology-based species circumscription underestimates the number of existing species. The large and ever growing number of DNA sequence data of fungi makes it possible to use these to identify potential cases of hidden species, which then need to be studied with extensive taxon samplings.

View Article and Find Full Text PDF

Fruiting bodies are responsible for the effective dispersal of meiospores in ascomycetes. Different fruiting body types include open (apothecia) or closed (perithecia, cleistothecia) forms, which have traditionally been used as key paradigms for ascomycete classification. Molecular phylogenies show that most fruiting body types have multiple phylogenetic origins within the phylum, and are not suitable for the circumscription of classes.

View Article and Find Full Text PDF

A phylogenetic and taxonomic study of the Physconia distorta morphotype complex was undertaken using ITS nu-rDNA as a molecular marker to re-evaluate this group. The analysis incorporated several samples of European P. distorta and also of American and European populations, recently named as P.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers examined the internal structure of ascospores in the Xanthoparmelia group of the Parmeliaceae family, comparing them with other related species.
  • They found that all Xanthoparmelia species had a distinct peanut-shaped vacuole, differing from the ellipsoid shape found in other related groups.
  • The study suggests that unique spore traits may play a role in the evolutionary success of Xanthoparmelia and highlights the importance of ascospores in understanding taxonomy within the family.
View Article and Find Full Text PDF

The phylogenetic position of Trypetheliaceae was studied using partial sequences of the mtSSU and nuLSU rDNA of 100 and 110 ascomycetes, respectively, including 48 newly obtained sequences. Our analysis confirms Trypetheliaceae as monophyletic and places the family in Dothideomycetes. Pyrenulaceae, which were previously classified with Trypetheliaceae in Pyrenulales or Melanommatales, are supported as belonging to Chaetothyriomycetes.

View Article and Find Full Text PDF