Publications by authors named "Ruth Caughlan"

Upregulated expression of efflux pumps, target mutations, LpxC protein overexpression, and mutations in were previously shown to mediate single-step resistance to the LpxC inhibitor CHIR-090 in Single-step selection experiments using three recently described LpxC inhibitors (compounds 2, 3, and 4) and mutant characterization showed that these mechanisms affect susceptibility to additional novel LpxC inhibitors. Serial passaging of wild-type and efflux pump-defective strains using the LpxC inhibitor CHIR-090 or compound 1 generated substantial shifts in susceptibility and underscored the interplay of efflux and nonefflux mechanisms. Whole-genome sequencing of CHIR-090 passage mutants identified efflux pump overexpression, mutations, and novel mutations in and in PA4465 as determinants of reduced susceptibility.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Phosphorylation of Pseudomonas aeruginosa lipopolysaccharide (LPS) is important for maintaining outer membrane integrity and intrinsic antibiotic resistance. We solved the crystal structure of the LPS heptose kinase WaaP, which is essential for growth of P. aeruginosa.

View Article and Find Full Text PDF

Argyrins are natural products with antibacterial activity against Gram-negative pathogens, such as , , and We previously showed that argyrin B targets elongation factor G (FusA). Here, we show that argyrin B activity against PAO1 (MIC = 8 μg/ml) was not affected by deletion of the MexAB-OprM, MexXY-OprM, MexCD-OprJ, or MexEF-OprN efflux pump. However, argyrin B induced expression of MexXY, causing slight but reproducible antagonism with the MexXY substrate antibiotic ciprofloxacin.

View Article and Find Full Text PDF
Article Synopsis
  • * Argyrin B binds to a unique allosteric site on EF-G, presenting a new mechanism of inhibiting protein synthesis, different from established antibiotics like fusidic acid.
  • * In eukaryotic cells, argyrin B disrupts mitochondrial protein synthesis by targeting mitochondrial elongation factor G1 (EF-G1), leading to growth inhibition in yeast and cancer cells, suggesting its potential as a therapeutic agent.
View Article and Find Full Text PDF

Testing P. aeruginosa efflux pump mutants showed that the LpxC inhibitor CHIR-090 is a substrate for MexAB-OprM, MexCD-OprJ, and MexEF-OprN. Utilizing P.

View Article and Find Full Text PDF

Gram-negative outer membrane (OM) integrity is maintained in part by Mg(2+) cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter.

View Article and Find Full Text PDF

The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump.

View Article and Find Full Text PDF

We characterized the nanLET operon in Bacteroides fragilis, whose products are required for the utilization of the sialic acid N-acetyl neuraminic acid (NANA) as a carbon and energy source. The first gene of the operon is nanL, which codes for an aldolase that cleaves NANA into N-acetyl mannosamine (manNAc) and pyruvate. The next gene, nanE, codes for a manNAc/N-acetylglucosamine (NAG) epimerase, which, intriguingly, possesses more similarity to eukaryotic renin binding proteins than to other bacterial NanE epimerase proteins.

View Article and Find Full Text PDF

Pasteurella multocida subsp. multocida is a commensal and opportunistic pathogen of food animals, wildlife, and pets and a zoonotic cause of human infection arising from contacts with these animals. Here, an investigation of multiple serotype A strains demonstrated the occurrence of membrane sialyltransferase.

View Article and Find Full Text PDF

Microbial virulence is known to emerge by horizontal gene transfer mechanisms. Here we describe the discovery of a novel filamentous prophage, designated CUS-1, which is integrated into the chromosomal dif homologue of the high-virulence clone Escherichia coli O18:K1:H7. An homologous chromosomal element (CUS-2) in Yersinia pestis biovar orientalis is integrated at the same relative location as CUS-1; both lysogenic E.

View Article and Find Full Text PDF