Publications by authors named "Ruth Birbe"

Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease.

View Article and Find Full Text PDF

Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction.

View Article and Find Full Text PDF

Background And Aims: The benefit of adjuvant chemotherapy for stage II colorectal cancer (CRC) patients remains unclear, emphasizing the need for improved prognostic biomarkers to identify patients at risk of metastatic recurrence. To address this unmet clinical need, we examined the expression and phosphorylation status of the vasodilator-stimulated phosphoprotein (VASP) in CRC tumor progression. VASP, a processive actin polymerase, promotes the formation of invasive membrane structures leading to extracellular matrix remodeling and tumor invasion.

View Article and Find Full Text PDF

Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans.

View Article and Find Full Text PDF

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes.

View Article and Find Full Text PDF

The retinoblastoma tumor suppressor (RB), a key regulator of cell-cycle progression and proliferation, is functionally suppressed in up to 50% of non-small cell lung cancer (NSCLC). RB function is exquisitely controlled by a series of proteins, including the CyclinD-CDK4/6 complex. In this study, we interrogated the capacity of a CDK4/6 inhibitor, palbociclib, to activate RB function.

View Article and Find Full Text PDF

Background: High oxidative stress as defined by hydroxyl and peroxyl activity is often found in the stroma of human breast cancers. Oxidative stress induces stromal catabolism, which promotes cancer aggressiveness. Stromal cells exposed to oxidative stress release catabolites such as lactate, which are up-taken by cancer cells to support mitochondrial oxidative phosphorylation.

View Article and Find Full Text PDF

Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes.

View Article and Find Full Text PDF

There is an unmet need in the development of an effective therapy for mutant K-ras-expressing non-small-cell lung cancer (NSCLC). Although various small molecules have been evaluated, an effective therapy remains a dream. siRNAs have the potential to downregulate mutant K-ras both at the protein and mRNA levels.

View Article and Find Full Text PDF

Objective: The tumor microenvironment frequently displays abnormal cellular metabolism, which contributes to aggressive behavior. Metformin inhibits mitochondrial oxidative phosphorylation, altering metabolism. Though the mechanism is unclear, epidemiologic studies show an association between metformin use and improved outcomes in head and neck squamous cell carcinoma (HNSCC).

View Article and Find Full Text PDF

RB loss occurs commonly in neoplasia but its contributions to advanced cancer have not been assessed directly. Here we show that RB loss in multiple murine models of cancer produces a prometastatic phenotype. Gene expression analyses showed that regulation of the cell motility receptor RHAMM by the RB/E2F pathway was critical for epithelial-mesenchymal transition, motility, and invasion by cancer cells.

View Article and Find Full Text PDF

A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers.

View Article and Find Full Text PDF

We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin.

View Article and Find Full Text PDF

Management of men with prostate cancer is fraught with uncertainty as physicians and patients balance efficacy with potential toxicity and diminished quality of life. Utilization of genomics as a prognostic biomarker has improved the informed decision-making process by enabling more rationale treatment choices. Recently investigations have begun to determine whether genomic information from tumor transcriptome data can be used to impact clinical decision-making beyond prognosis.

View Article and Find Full Text PDF

Renal cell carcinoma is a common entity often managed surgically with excellent survival benefits. We report a rare case of sarcomatoid renal cell carcinoma with aggressive growth kinetics after palliative resection captured radiographically.

View Article and Find Full Text PDF

Objectives/hypothesis: In many cancers, varying regions within the tumor are often phenotypically heterogeneous, including their metabolic phenotype. Further, tumor regions can be metabolically compartmentalized, with metabolites transferred between compartments. When present, this metabolic coupling can promote aggressive behavior.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20).

View Article and Find Full Text PDF

A patient diagnosed with metastatic melanoma developed the paraneoplastic syndrome of humoral hypercalcemia of malignancy and cachexia after receiving ipilumumab. The cause of the hypercalcemia was thought to be secondary to parathyroid hormone-related peptide (PTHrP) as plasma levels were found to be elevated. The patient underwent two tumor biopsies: at diagnosis (when calcium levels were normal) and upon development of hypercalcemia and cachexia.

View Article and Find Full Text PDF

Objective: To evaluate (64)Cu-TP3805 as a novel biomolecule, to positron emission tomography (PET) image prostate cancer (PC), at the onset of which VPAC1, the superfamily of G protein-coupled receptors, is expressed in high density on PC cells, but not on normal cells.

Materials And Methods: Twenty-five patients undergoing radical prostatectomy were PET/X-ray computerized tomography imaged preoperatively with (64)Cu-TP3805. Standardized maximum uptake (SUVmax) values were determined and malignant lesions (standardized uptake value > 1.

View Article and Find Full Text PDF

Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases.

View Article and Find Full Text PDF

We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated.

View Article and Find Full Text PDF