Publications by authors named "Ruth Bejarano-Escobar"

Müller cells are the predominant glial cell type in the retina of vertebrates. They play a wide variety of roles in both the developing and the mature retina that have been widely reported in the literature. However, less attention has been paid to their role in phagocytosis of cell debris under physiological, pathological or experimental conditions.

View Article and Find Full Text PDF

The LIM-homeodomain transcription factor Islet-1 (Isl1) has been widely used as a marker of different subtypes of neurons in the developing and mature retina of vertebrates. During retinal neurogenesis, early Isl1 expression is detected in the nuclei of neuroblasts that give rise to ganglion, amacrine, bipolar, and horizontal cells. In the mature retina, Isl1 expression is restricted to the nuclei of ganglion cells, cholinergic amacrine cells, ON-bipolar cells, and subpopulations of horizontal cells.

View Article and Find Full Text PDF

Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny.

View Article and Find Full Text PDF
Article Synopsis
  • The LIM-homeodomain transcription factor Islet1 (Isl1) is a key marker for neuronal differentiation in the developing visual systems of various vertebrates.
  • New research focused on Xenopus laevis (a type of frog) showed that Isl1-positive cells first appeared in the retina at early developmental stages, specifically around St29-30, and increased significantly by St35-36.
  • The study suggests that Isl1 plays a crucial role in the differentiation and maintenance of various retinal cell types, making it a valuable marker for understanding retinal development in Xenopus laevis.
View Article and Find Full Text PDF

The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens.

View Article and Find Full Text PDF

Constant intense light causes apoptosis of photoreceptors in the retina of albino fish. However, very few studies have been performed on pigmented species. Tench (Tinca tinca) is a teleost inhabiting dimly lit environments that has a predominance of rods within the photoreceptor layer.

View Article and Find Full Text PDF

Here we present a detailed study of the major events in the retinal histogenesis in a slow-developing elasmobranch species, the small-spotted catshark, during embryonic, postnatal and adult stages using classical histological and immunohistological methods, providing a complete neurochemical characterization of retinal cells. We found that the retina of the small-spotted catshark was fully differentiated prior to birth. The major developmental events in retinal cell differentiation occurred during the second third of the embryonic period.

View Article and Find Full Text PDF

Here, we show a detailed chronotopographical analysis of cathepsin B and D expression during development of the mouse visual system. Both proteases were detected in large rounded/ameboid cells usually located in close relationship with prominent sites of extensive physiological cell death. In concordance with their morphological features and topographical distribution, we demonstrate that expressing cells corresponded with macrophages and microglial precursors.

View Article and Find Full Text PDF

We describe the major events in the retinogenesis in an altricial fish species, the Senegalese sole. The major developmental events in the sole retina occurred early after hatching (posthatching day 0, P0). Thus, (1) plexiform layers became recognizable at P1.

View Article and Find Full Text PDF

Here we present a detailed study of the major events in the retinal histogenesis in a freshwater epibenthonic fish species, the Tench (Tinca tinca, Linneo 1758) during embryonic, prolarval, larval, and juvenile stages, using classical histological and immunohistological methods, providing a complete neurochemical characterization of retinal cells. We find a morphologically undifferentiated retina during embryonic stages and even at the hatching stage (postnatal day 0, P0). However, the emergence of the different retinal layers occurs in the first postnatal day (P1).

View Article and Find Full Text PDF