Background: Chronic pain is a highly prevalent long-term condition, experienced unequally, impacting both the individual living with pain, and wider society. 'Acceptance' of chronic pain is relevant to improved consultations in pain care, and navigating an approach towards evidence-based, long-term management and associated improvements in health. However, the concept proves difficult to measure, and primary qualitative studies of lived experiences show complexity related to our socio-cultural-political worlds, healthcare experiences, and difficulties with language and meaning.
View Article and Find Full Text PDFBackground: Little is known about how asymptomatic testing as a method to control transmission of COVID-19 can be implemented, and the prevalence of asymptomatic infection within university populations. The objective of this study was to investigate how to effectively set-up and implement a COVID-19 testing programme using novel reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) technology and to quantify the scale of asymptomatic infection on a university campus.
Methods: An observational study to describe the set-up and implementation of a novel COVID-19 testing programme on a UK university campus between September and December 2020.
Purpose: To demonstrate the diagnostic performance of rapid SARS-CoV-2 RT-LAMP assays, comparing the performance of genomic versus sub-genomic sequence target with subsequent application in an asymptomatic screening population.
Methods: RT-LAMP diagnostic specificity (DSe) and sensitivity (DSe) was determined using 114 RT-PCR clinically positive and 88 RT-PCR clinically negative swab samples processed through the diagnostic RT-PCR service within the University Hospitals of Leicester NHS Trust. A swab-based RT-LAMP SARS-CoV-2 screening programme was subsequently made available to all staff and students at the University of Leicester (Autumn 2020), implemented to ISO 15189:2012 standards using NHS IT infrastructure and supported by University Hospital Leicester via confirmatory NHS diagnostic laboratory testing of RT-LAMP 'positive' samples.
A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues.
View Article and Find Full Text PDFB-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens.
View Article and Find Full Text PDFChildren with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) overexpressing the gene () have poor prognosis. CRLF2 protein overexpression leads to activated JAK/STAT signaling and trials are underway using JAK inhibitors to overcome treatment failure. Pre-clinical studies indicated limited efficacy of single JAK inhibitors, thus additional pathways must be targeted in cells.
View Article and Find Full Text PDFWe demonstrate the usefulness of synthetic lethal screening of a conditionally BCL6-deficient Burkitt lymphoma cell line, DG75-AB7, with a library of small molecules to determine survival pathways suppressed by BCL6 and suggest mechanism-based treatments for lymphoma. Lestaurtinib, a JAK2 inhibitor and one of the hits from the screen, repressed survival of BCL6-deficient cells in vitro and reduced growth and proliferation of xenografts in vivo BCL6 deficiency in DG75-AB7 induced JAK2 mRNA and protein expression and STAT3 phosphorylation. Surface IL10RA was elevated by BCL6 deficiency, and blockade of IL10RA repressed STAT3 phosphorylation.
View Article and Find Full Text PDFThe circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring.
View Article and Find Full Text PDFSoc Work Health Care
January 2016
High 30-day readmission rates are a major burden to the American medical system. Much attention is on transitional care to decrease financial costs and improve patient outcomes. Social workers may be uniquely qualified to improve care transitions and have not previously been used in this role.
View Article and Find Full Text PDFThe long-term genetic effects of maternal irradiation remain poorly understood. To establish the effects of radiation exposure on mutation induction in the germline of directly exposed females and the possibility of transgenerational effects in their non-exposed offspring, adult female BALB/c and CBA/Ca mice were given 1 Gy of acute X-rays and mated with control males. The frequency of mutation at expanded simple tandem repeat (ESTR) loci in the germline of directly exposed females did not differ from that of controls.
View Article and Find Full Text PDFEpidemiological evidence suggests that the deleterious effects of prenatal irradiation can manifest during childhood, resulting in an increased risk of leukaemia and solid cancers after birth. However, the mechanisms underlying the long-term effects of foetal irradiation remain poorly understood. This study was designed to analyse the impact of in utero irradiation on mutation rates at expanded simple tandem repeat (ESTR) DNA loci in directly exposed mice and their first-generation (F(1)) offspring.
View Article and Find Full Text PDFUsing single-molecule polymerase chain reaction, the frequency of spontaneous and radiation-induced mutation at an expanded simple tandem repeat (ESTR) locus was studied in DNA samples extracted from sperm and bone marrow of Atm knockout (Atm(+/-)) heterozygous male mice. The frequency of spontaneous mutation in sperm and bone marrow in Atm(+/-) males did not significantly differ from that in wild-type BALB/c mice. Acute exposure to 1 Gy of gamma-rays did not affect ESTR mutation frequency in bone marrow and resulted in similar increases in sperm samples taken from Atm(+/-) and BALB/c males.
View Article and Find Full Text PDFRecent data shows that the effects of ionizing radiation are not restricted to the directly exposed parental germ cells, but can also manifest in their nonexposed offspring, resulting in elevated mutation rates and cancer predisposition. The mechanisms underlying these transgenerational changes remain poorly understood. One of the most important steps in elucidating these mechanisms is to investigate the initial cellular events that trigger genomic instability.
View Article and Find Full Text PDFMutation induction in directly exposed cells is currently regarded as the main component of the genetic risk of ionising radiation for humans. However, recent studies showing that exposure to ionising radiation results in elevated mutation rates detectable in the non-irradiated progeny of exposed cells challenge the existing paradigm in radiation biology. This review describes some recent data on radiation-induced genomic instability in vitro and mainly focuses on the in vivo phenomenon of transgenerational instability, where elevated mutation rates are detected in the non-exposed offspring of irradiated parents.
View Article and Find Full Text PDFMutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1-/-) deficient male mice. Non-exposed scid and PARP-/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1-/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males.
View Article and Find Full Text PDFMutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice.
View Article and Find Full Text PDF