Publications by authors named "Ruth B S Harris"

Previous studies have shown that very low dose, acute, single peripheral leptin injections fully activate arcuate nucleus signal transducer and activator of transcription 3 (STAT3), but ventromedial hypothalamus (VMH) pSTAT3 continues to increase with higher doses of leptin that inhibit food intake. The lowest dose that inhibited intake increased circulating leptin 300-fold whereas food intake is inhibited by chronic peripheral leptin infusions that only double circulating leptin. This study examined whether the pattern of hypothalamic pSTAT3 was the same in leptin-infused rats as in leptin-injected rats.

View Article and Find Full Text PDF

Rats offered free access to sucrose solution in addition to a sucrose-free composite diet develop leptin resistance whereas those consuming a similar amount of sucrose from a dry diet remain leptin responsive. Here we tested whether rats consuming a complete high sucrose diet in liquid form also became leptin resistant. Female Sprague Dawley rats were offered a sucrose free diet (NS), a dry high sucrose diet (HS), NS diet plus 30% sucrose solution (LiqS), NS diet in liquid form (NSLiq) or HS diet in Liquid form (HSLiq).

View Article and Find Full Text PDF

Others have shown that leptin and cholecystokinin (CCK) act synergistically to suppress food intake. Experiments described here tested whether leptin in the ventromedial hypothalamus (VMH) contributes to the synergy with peripheral CCK in male Sprague Dawley rats. A subthreshold injection of 50-ng leptin into the VMH 1 h before a peripheral injection of 1 µg/kg CCK did not change the response to CCK in rats offered chow or low-fat purified diet, but did exaggerate the reduction in intake of high-fat diet 30 min and 1 h after injection in rats that had been food deprived for 8 h.

View Article and Find Full Text PDF

This experiment investigated which hypothalamic nuclei were activated by a dose of leptin that inhibited food intake. Foodnot intake, energy expenditure, respiratory exchange ratio (RER), and intrascapular brown adipose tissue (IBAT) temperature were measured in male and female Sprague Dawley rats for 36 h following an intraperitoneal injection of 0, 50, 200, 500, or 1,000 µg leptin/kg with each rat tested with each dose of leptin in random order. In both males and females, RER and 12-h food intake were inhibited only by 1,000 µg leptin/kg, but there was no effect on energy expenditure or IBAT temperature.

View Article and Find Full Text PDF

Rats consuming 30% sucrose solution and a sucrose-free diet (LiqS) become leptin resistant, whereas rats consuming sucrose from a formulated diet (HS) remain leptin responsive. This study tested whether leptin resistance in LiqS rats extended beyond a failure to inhibit food intake and examined leptin responsiveness in the hypothalamus and hindbrain of rats offered HS, LiqS, or a sucrose-free diet (NS). Female LiqS Sprague-Dawley rats initially only partially compensated for the calories consumed as sucrose, but energy intake matched that of HS and NS rats when they were transferred to calorimetry cages.

View Article and Find Full Text PDF

Previous studies indicate that inhibition of food intake by leptin is mediated by an integrated response to activation of hypothalamic and hindbrain receptors. This study tested whether loss of hindbrain leptin receptor signaling changed sensitivity to forebrain leptin. Injections of leptin-conjugated saporin (Lep-Sap) into the medial nucleus of the solitary tract (NTS) were used to destroy hindbrain leptin receptor-expressing neurons of male Sprague-Dawley rats.

View Article and Find Full Text PDF

Leptin administration into the hindbrain, and specifically the nucleus of the solitary tract, increases phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation, in hypothalamic nuclei known to express leptin receptors. The ventromedial nucleus of the hypothalamus (VMH) shows the greatest response, with a threefold increase in pSTAT3. This experiment tested the importance of VMH leptin receptor-expressing neurons in mediating weight loss caused by fourth ventricle (4V) leptin infusion.

View Article and Find Full Text PDF

Previous studies suggest that weight loss occurs when leptin receptors in both the forebrain and hindbrain are activated. Experiments described here tested whether this integration is mediated through a neural connection or by leptin diffusion through the subarachanoid space. If the hypothalamus and hindbrain communicated through a neural pathway, then a very low dose of leptin infused directly into the nucleus of the solitary tract (NTS) would enhance the response to third ventricle (3V) leptin but would have no effect if infused into the fourth ventricle (4V).

View Article and Find Full Text PDF

Rats offered 30% sucrose solution plus chow or a sucrose-free diet develop leptin resistance within 4 weeks. This experiment tested whether leptin resistance was associated with the reward of sweet taste or the pre- or post-absorptive effects of consumption of simple carbohydrate. Male Sprague Dawley rats were offered a sucrose-free diet (NS), a diet containing 67% calories as sucrose (HS) or NS diet plus 30% sucrose (LS), 0.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhage (ICH) produces the highest acute mortality and worst outcomes of all stroke subtypes. Hematoma volume is an independent determinant of ICH patient outcomes, making clot resolution a primary goal of clinical management. Herein, remote-limb ischemic post-conditioning (RIC), the repetitive inflation-deflation of a blood pressure cuff on a limb, accelerated hematoma resolution and improved neurological outcomes after ICH in mice.

View Article and Find Full Text PDF

Male rats offered 30% sucrose solution in addition to chow develop leptin resistance without an increase in energy intake or body fat. This study tested whether the leptin resistance was dependent on the physical form of the sucrose. Sprague-Dawley rats were offered a sucrose-free (NS) diet, a 66.

View Article and Find Full Text PDF

This review summarizes the evidence derived from studies utilizing denervation procedures to demonstrate sympathetic control of white adipose tissue metabolism and body fat mass. A majority of the work demonstrating neural control of white fat was performed in the Bartness laboratory with Siberian hamsters as the predominant experimental model. These animals experience dramatic changes in body fat mass in response to changes in photoperiod, however, the mechanisms identified in hamsters have been reproduced or further elucidated by experiments with other animal models.

View Article and Find Full Text PDF

We previously reported that low-dose leptin infusions into the third or fourth ventricle that do not affect energy balance when given independently cause rapid weight loss when given simultaneously. Therefore, we tested whether hindbrain leptin enhances the response to forebrain leptin or whether forebrain leptin enhances the response to hindbrain leptin. Rats received fourth-ventricle infusions of saline or 0.

View Article and Find Full Text PDF

Rats and mice exposed to repeated stress or a single severe stress exhibit a sustained increase in energetic, endocrine, and behavioral response to subsequent novel mild stress. This study tested whether the hyper-responsiveness was due to a lowered threshold of response to corticotropin releasing factor (CRF) or an exaggerated response to a standard dose of CRF. Male Sprague-Dawley rats were subjected to 3h of restraint on each of 3 consecutive days (RRS) or were non-restrained controls.

View Article and Find Full Text PDF

Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus.

View Article and Find Full Text PDF

Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse.

View Article and Find Full Text PDF

Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting.

View Article and Find Full Text PDF

We previously reported that a 2-day peripheral infusion of glucosamine caused leptin resistance in rats, suggesting a role for the hexosamine biosynthetic pathway (HBP) in the development of leptin resistance. Here we tested leptin responsiveness in mice in which HBP activity was stimulated by offering 30% sucrose solution in addition to chow and water or by infusing glucosamine. Mice were leptin resistant after 33 days of access to sucrose.

View Article and Find Full Text PDF

Leptin receptors (ObRs) in the forebrain and hindbrain have been independently recognized as important mediators of leptin responses. We recently used low-dose leptin infusions to show that chronic activation of both hypothalamic and hindbrain ObRs is required to reduce body fat. The objective of the present study was to identify the brain nuclei that are selectively activated in rats that received chronic infusion of leptin in both the forebrain and hindbrain.

View Article and Find Full Text PDF

Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity.

View Article and Find Full Text PDF

Rats offered 30% sucrose solution in addition to chow and water become leptin resistant therefore we investigated the effect of sucrose solution consumption on leptin signaling. In Experiment 1 rats were resistant to 3rd ventricle injections of1.5 μg leptin after 36 days of sucrose and western blot indicated that resistance was associated with increased basal levels of signal transducer and activator of transcription 3 phosphorylation (pSTAT3).

View Article and Find Full Text PDF

Continuous subcutaneous administration of leptin normalizes blood glucose levels in rodent models of Type 1 and Type 2 diabetes independent of changes in food intake, body weight, and plasma insulin. We tested whether an acute intravenous leptin infusion changed blood glucose in normal and diet-induced leptin-resistant rats to determine whether this measure could be used as a marker of leptin sensitivity. Leptin-responsive chow-fed rats and diet-induced leptin-resistant male Sprague-Dawley rats were fitted with thoracic jugular vein catheters.

View Article and Find Full Text PDF

Aldosterone is the primary adrenocortical hormone regulating sodium retention, and its production is under the control of the renin-angiotensin-aldosterone system (RAAS). In vitro, angiotensin II can induce aldosterone production in adrenocortical cells without causing cell proliferation. In vivo, a low-sodium diet activates the RAAS and aldosterone production, at least in part, through an expansion of the adrenal zona glomerulosa (zG) layer.

View Article and Find Full Text PDF

Previously, we reported that low-dose leptin infusions into the fourth ventricle produced a small but significant increase in body fat. These data contrast with reports that injections of higher doses of leptin into the fourth ventricle inhibit food intake and weight gain. In this study, we tested whether exogenous leptin in the fourth ventricle opposed or contributed to weight loss caused by third ventricle leptin infusion by blocking diffusion of CSF from the third to the fourth ventricle.

View Article and Find Full Text PDF