Publications by authors named "Ruth Arnon"

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes.

View Article and Find Full Text PDF

The major proteins involved in Alzheimer's disease (AD) are amyloid precursor protein (APP) and Tau. We demonstrate that APP1 (390-412) and Tau1 (19-34), linked together with either a flexible or a rigid peptide bridge, are able to inhibit, in vitro, the interaction between APP and Tau proteins. Furthermore, nasal administration of biotin-labelled Flex peptide for two weeks indicated the localization of the peptide around and close to plaques in the hippocampus area.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Myelin Basic Protein (MBP) and its role in Multiple Sclerosis, particularly how its α-helix structure affects antibody recognition.
  • Researchers synthesized and tested two different lengths of MBP peptides, finding that elongating the peptide improves antibody recognition but destabilizes its helical structure.
  • Results indicate that the original shorter peptide (MBP 81-106) is better recognized by IgM antibodies in competitive ELISA due to its stable helical form, highlighting the complexity of antibody-antigen interactions in different testing conditions.
View Article and Find Full Text PDF

Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35-55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death.

View Article and Find Full Text PDF

In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage.

View Article and Find Full Text PDF

Background: Experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, is a widely used multiple sclerosis (MS) model. Unlike the spontaneous occurrence of MS, in EAE, external immunization with the MOG peptide (200-300 µg/mouse), emulsified in adjuvant enriched with Mycobacterium Tuberculosis (MT) H37Ra (100-500 µg mouse), and pertussis toxin (PTx, 200-500 ng/mouse) injections, are applied, which heavily boosts the immune system.

New Method: A detailed and systematic titration of the MOG 35-55 EAE induction protocol in C57BL/6 mice reveals the minimal doses of the MOG 35-55 peptide, MT H37Ra, and PTx, required for disease manifestation.

View Article and Find Full Text PDF

To identify the mechanisms relevant for the therapeutic effect of glatiramer acetate (GA), we studied T- and B- regulatory cells as well as GM-CSF expression in mice recovered from experimental autoimmune encephalomyelitis (EAE). Selective depletion of Tregs reduced but did not eliminate the ability of GA to ameliorate EAE, indicating a role for additional immune-subsets. The prevalence of Bregs in the periphery and the CNS of EAE-mice increased following GA-treatment.

View Article and Find Full Text PDF

The two major proteins involved in Alzheimer's disease (AD) are the amyloid precursor protein (APP) and Tau. Here, we demonstrate that these two proteins can bind to each other. Four possible peptides APP1 (390-412), APP2 (713-730), Tau1 (19-34) and Tau2 (331-348), were predicted to be involved in this interaction, with actual binding confirmed for APP1 and Tau1.

View Article and Find Full Text PDF

Glatiramer acetate (GA, Copaxone®, Copolymer1, Cop 1) is an approved drug for the treatment of relapsing-remitting multiple sclerosis (RRMS). Its efficacy in reducing the frequency of exacerbations and its safety profile establish it as a first-line therapy for MS. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicate that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways.

View Article and Find Full Text PDF

The severe motor impairment in the MS animal model experimental autoimmune encephalomyelitis (EAE) obstructs the assessment of cognitive functions. We developed an experimental system that evaluates memory faculties in EAE-affected mice, irrespective of their motor performance, enabling the assessment of cognitive impairments along the disease duration, the associated brain damage, and the consequences of glatiramer acetate (GA) treatment on these manifestations. The delayed-non-matching to sample (DNMS) T-maze task, testing working and long term memory was adapted and utilized.

View Article and Find Full Text PDF

To elucidate mechanisms contributing to cortical pathology in multiple sclerosis (MS), we investigated neurovascular aberrations, in particular the association of astrocytes with cortical neurons and blood vessels, in mice induced with experimental autoimmune encephalomyelitis (EAE). Blood-brain barrier (BBB) dysfunction was evident by leakage of the tracer sodium fluorescein, along with reduced expression of claudin-5 by endothelial cells and desmin by pericytes. Immunohistological and ultrastructural analyses revealed detachment of the astroglial cell bodies from the blood vessels and loss of their connections with both the blood vessels and the neuronal synapses.

View Article and Find Full Text PDF

The lack of biomarkers is a major obstacle for investigating myelin repair. We used metabolic incorporation of the choline analog - propargyl-choline (P-Cho) to label and visualize newly synthesized myelin in the CNS of mice induced with experimental autoimmune encephalomyelitis (EAE). We further developed unbiased colocalization analysis to quantify P-Cho incorporation specifically into the myelin.

View Article and Find Full Text PDF

In demyelinating diseases such as multiple sclerosis, disrupted myelin structures impair the functional role of the sheath as an insulating layer for proper nerve conduction. Though the etiology and recovery pathways remain unclear, in vivo studies show alterations in the lipid and the adhesive protein (myelin basic protein, MBP) composition. We find that in vitro cytoplasmic myelin membranes with modified lipid composition and low MBP concentration, as in demyelinating disease, show structural instabilities and pathological phase transition from a lamellar to inverted hexagonal, which involve enhanced local curvature.

View Article and Find Full Text PDF

Cortical blood flow can be modulated by local activity across a range of species; from barrel-specific blood flow in the rodent somatosensory cortex to the human cortex, where BOLD-fMRI reveals numerous functional borders. However, it appears that the distribution of blood capillaries largely ignores these functional boundaries. Here we report that, by contrast, astrocytes, a major player in blood-flow control, show a striking morphological sensitivity to functional borders.

View Article and Find Full Text PDF

Emerging evidence suggests that immunological mechanisms underlie metabolic control of adipose tissue. Here, we have shown the regulatory impact of a rare subpopulation of dendritic cells, rich in perforin-containing granules (perf-DCs). Using bone marrow transplantation to generate animals selectively lacking perf-DCs, we found that these chimeras progressively gained weight and exhibited features of metabolic syndrome.

View Article and Find Full Text PDF

Background And Aims: The aim of this study was to perform sequential small bowel (SB) capsule endoscopy (CE) studies in patients with known active Crohn's disease (CD) during different treatments, to characterize the changes in the SB mucosa over time, and to correlate the CE findings with clinical and laboratory parameters of inflammation.

Methods: Consecutive patients with known moderately active CD were prospectively recruited. After proven patency with Agile capsule, CE studies were performed at baseline and after 4, 12 and 24 weeks.

View Article and Find Full Text PDF

Myelinogenesis in the mammal nervous system occurs predominantly postnatally. Glatiramer acetate (GA), a drug for the treatment for multiple sclerosis (MS), has been shown to induce immunomodulation and neuroprotection in the inflamed CNS in MS and in experimental autoimmune encephalomyelitis (EAE). Here we investigated whether GA can affect myelinogenesis and oligodendrogenesis in the developing nervous system under nonpathological conditions.

View Article and Find Full Text PDF

This study explores the consequences of deficiency in the autoimmune regulator (Aire) on the susceptibility to experimental autoimmune encephalomyelitis (EAE). Increased susceptibility to EAE was found in Aire knockout (KO) compared to wild type (WT) in 6month old mice. In contrast, 2month old Aire KO mice were less susceptible to EAE than WT mice, and this age-related resistance correlated with elevated proportions of T regulatory (Treg) cells in their spleen and brain.

View Article and Find Full Text PDF

The roles of inflammation and degeneration as well as of gray matter abnormalities in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are controversial. We analyzed the pathological manifestations in two EAE models, the chronic oligodendrocyte glycoprotein (MOG)-induced versus the relapsing-remitting proteolipid protein (PLP)-induced, along the disease progression, using advanced magnetic resonance imaging (MRI) parameters. The emphasis of this study was the overall assessment of the whole brain by histogram analysis, as well as the detection of specific affected regions by voxel based analysis (VBA) using quantitative T2, magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI).

View Article and Find Full Text PDF

T cells play fundamental roles in adaptive immunity, relying on a diverse repertoire of T-cell receptor (TCR) α and β chains. Diversity of the TCR β chain is generated in part by a random yet intrinsically biased combinatorial rearrangement of variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments. The mechanisms that determine biases in gene segment use remain unclear.

View Article and Find Full Text PDF

Laquinimod is an orally active molecule that showed efficacy in clinical trials in multiple sclerosis. We studied its effects in the CNS, when administered by therapeutic regimen to mice inflicted with experimental autoimmune encephalomyelitis (EAE). Laquinimod reduced clinical and inflammatory manifestations and elevated the prevalence of T-regulatory cells in the brain.

View Article and Find Full Text PDF

The respective roles of inflammatory and neurodegenerative processes in the pathology of multiple sclerosis (MS) and in its animal model experimental autoimmune encephalomyelitis (EAE) are controversial. Novel treatment strategies aim to operate within the CNS to induce neuroprotection and repair processes in addition to their anti-inflammatory properties. In this study we analyzed and compared the in situ pathological manifestations of EAE utilizing two different models, namely the relapsing-remitting PLP-induced and the chronic MOG-induced diseases.

View Article and Find Full Text PDF