Publications by authors named "Ruth A Swanson-Wagner"

Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope.

View Article and Find Full Text PDF

Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of expression resulted in the identification of 100 putative imprinted genes in maize endosperm, including 54 maternally expressed genes (MEGs) and 46 paternally expressed genes (PEGs).

View Article and Find Full Text PDF

Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information.

View Article and Find Full Text PDF

Individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals within a species. Array comparative genomic hybridization (CGH) was used to compare gene content and copy number variation among 19 diverse maize inbreds and 14 genotypes of the wild ancestor of maize, teosinte.

View Article and Find Full Text PDF

Heterosis refers to the superior performance of hybrid progeny relative to their inbred parents, but the mechanisms responsible are unknown. Hybrids between the maize inbred lines B73 and Mo17 exhibit heterosis regardless of cross direction. These reciprocal hybrids differ from each other phenotypically, and 30 to 50% of their genes are differentially expressed.

View Article and Find Full Text PDF

Heterosis is the phenomenon whereby the progeny of particular inbred lines have enhanced agronomic performance relative to both parents. Although several hypotheses have been proposed to explain this fundamental biological phenomenon, the responsible molecular mechanisms have not been determined. The maize inbred lines B73 and Mo17 produce a heterotic F1 hybrid.

View Article and Find Full Text PDF