We consider the dependence of a broad class of chance-corrected weighted agreement coefficients on the weighting scheme that penalizes rater disagreements. The considered class encompasses many existing coefficients with any number of raters, and one real-valued power parameter defines the weighting scheme that includes linear, quadratic, identity, and radical weights. We obtain the first-order and second-order derivatives of the coefficients with respect to the power parameter and decompose them into components corresponding to all pairs of different category distances.
View Article and Find Full Text PDFVan Oest (2019) developed a framework to assess interrater agreement for nominal categories and complete data. We generalize this framework to all four situations of nominal or ordinal categories and complete or incomplete data. The mathematical solution yields a chance-corrected agreement coefficient that accommodates any weighting scheme for penalizing rater disagreements and any number of raters and categories.
View Article and Find Full Text PDFPsychol Methods
August 2019
We derive a general structure that encompasses important coefficients of interrater agreement such as the S-coefficient, Cohen's kappa, Scott's pi, Fleiss' kappa, Krippendorff's alpha, and Gwet's AC1. We show that these coefficients share the same set of assumptions about rater behavior; they only differ in how the unobserved category proportions are estimated. We incorporate Bayesian estimates of the category proportions and propose a new agreement coefficient with uniform prior beliefs.
View Article and Find Full Text PDF