Financial distress identification remains an essential topic in the scientific literature due to its importance for society and the economy. The advancements in information technology and the escalating volume of stored data have led to the emergence of financial distress that transcends the realm of financial statements and its' indicators (ratios). The feature space could be expanded by incorporating new perspectives on feature data categories such as macroeconomics, sectors, social, board, management, judicial incident, .
View Article and Find Full Text PDFTemporal network data is often encoded as time-stamped interaction events between senders and receivers, such as co-authoring scientific articles or communication via email. A number of relational event frameworks have been proposed to address specific issues raised by complex temporal dependencies. These models attempt to quantify how individual behaviour, endogenous and exogenous factors, as well as interactions with other individuals modify the network dynamics over time.
View Article and Find Full Text PDF