Publications by authors named "Rustom Falahati"

Siglecs (sialic acid-binding immunoglobulin-like lectins) are single-pass cell surface receptors that have inhibitory activities on immune cells. Among these, Siglec-8 is a CD33-related family member selectively expressed on human mast cells and eosinophils, and at low levels on basophils. These cells can participate in inflammatory responses by releasing mediators that attract or activate other cells, contributing to the pathogenesis of allergic and non-allergic diseases.

View Article and Find Full Text PDF

In addition to their well characterized role in mediating IgE-dependent allergic diseases, aberrant accumulation and activation of mast cells (MCs) is associated with many non-allergic inflammatory diseases, whereby their activation is likely triggered by non-IgE stimuli (e.g., IL-33).

View Article and Find Full Text PDF

Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils.

View Article and Find Full Text PDF
Article Synopsis
  • AK002 is a targeted antibody being studied for treating allergic and inflammatory diseases by specifically engaging Siglec-8, which is found on mast cells and eosinophils, leading to their apoptosis and reduced activation.
  • The study assessed AK002's effectiveness in various models, showing it binds selectively to relevant cells, induces cell death in activated eosinophils, and enhances immune responses through antibody-dependent cell-mediated cytotoxicity (ADCC).
  • Results indicate that AK002 can significantly lower eosinophil levels in human lung tissues and help prevent severe allergic reactions in mouse models, suggesting its potential as a therapeutic option for related diseases.
View Article and Find Full Text PDF

Background: Mast cells are a critical component of allergic responses in humans, and animal models that allow the in vivo investigation of their contribution to allergy and evaluation of new human-specific therapeutics are urgently needed.

Objective: To develop a new humanized mouse model that supports human mast cell engraftment and human IgE-dependent allergic responses.

Methods: This model is based on the NOD-scid IL2rg(null)SCF/GM-CSF/IL3 (NSG-SGM3) strain of mice engrafted with human thymus, liver, and hematopoietic stem cells (termed Bone marrow, Liver, Thymus [BLT]).

View Article and Find Full Text PDF

Tumour pathogenesis is characterized by an immunosuppressive microenvironment that limits the development of effective tumour-specific immune responses. This is in part the result of tumour-dependent recruitment and activation of regulatory cells, such as myeloid-derived suppressor cells and regulatory T cells in the tumour microenvironment and draining lymph nodes. Shedding of gangliosides by tumour cells has immunomodulatory properties, suggesting that gangliosides may be a critical factor in initiating an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Current approaches for hematopoietic stem cell (HSC) and organ transplantation are limited by donor and host-mediated immune responses to allo-antigens. Application of these therapies is limited by the toxicity of preparative and post-transplant immunosuppressive regimens and a shortage of appropriate HLA-matched donors. We have been exploring two complementary approaches for genetically modifying donor cells that achieve long-term suppression of cellular proteins that elicit host immune responses to mismatched donor antigens, and provide a selective advantage to genetically engineered donor cells after transplantation.

View Article and Find Full Text PDF

In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3.

View Article and Find Full Text PDF

Although it is clear that the CD45 tyrosine phosphatase is required for efficient T-cell activation and T-cell development, the factors that regulate CD45 function remain uncertain. Previous data have indicated that there is an association of CD45 with CD4 and the T-cell receptor (TCR) complex controlled by the variable ectodomain of CD45 and, following activation, by high- and low-potency peptides. This suggests that controlling substrate access to CD45 may be an important regulatory mechanism during T-cell activation.

View Article and Find Full Text PDF

CD45-dependent dephosphorylation of the negative regulatory C-terminal tyrosine of the Src family kinase Lck, promotes efficient TCR signal transduction. However, despite the role of CD45 in positively regulating Lck activity, the distinct phenotypes of CD45 and Lck/Fyn-deficient mice suggest that the role of CD45 in promoting Lck activity may be differentially regulated during thymocyte development. In this study, we have found that the C-terminal tyrosine of Lck (Y505) is markedly hyperphosphorylated in total thymocytes from CD45-deficient mice compared with control animals.

View Article and Find Full Text PDF

Extracellular cyclophilins have been well described as chemotactic factors for various leukocyte subsets. This chemotactic capacity is dependent upon interaction of cyclophilins with the cell surface signaling receptor CD147. Elevated levels of extracellular cyclophilins have been documented in several inflammatory diseases.

View Article and Find Full Text PDF

Cell surface gangliosides are shed by tumors into their microenvironment. In this study they inhibit cellular immune responses, including APC development and function, which is critical for Th1 and Th2 cell development. Using human dendritic cells (DCs) and naive CD4(+) T cells, we separately evaluated Th1 and Th2 development under the selective differentiating pressures of DC1-inducing pertussis toxin (PT) and DC2-inducing cholera toxin (CT).

View Article and Find Full Text PDF

Receptor-stimulated generation of intracellular reactive oxygen species (ROS) modulates signal transduction, although the mechanism(s) is unclear. One potential basis is the reversible oxidation of the active site cysteine of protein tyrosine phosphatases (PTPs). Here, we show that activation of the antigen receptor of T cells (TCR), which induces production of ROS, induces transient inactivation of the SH2 domain-containing PTP, SHP-2, but not the homologous SHP-1.

View Article and Find Full Text PDF