Publications by authors named "Rustighi A"

Conventional type 1 dendritic cells (cDC1) are critical regulators of anti-tumoral T-cell responses. The structure and abundance of intercellular contacts between cDC1 and CD8 T cells in cancer tissues is important to determine the outcome of the T-cell response. However, the molecular determinants controlling the stability of cDC1-CD8 interactions during cancer progression remain poorly investigated.

View Article and Find Full Text PDF

Background: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect.

Methods: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer.

Results: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers.

View Article and Find Full Text PDF

Reprogramming of amino acid metabolism, sustained by oncogenic signaling, is crucial for cancer cell survival under nutrient limitation. Here we discovered that missense mutant p53 oncoproteins stimulate de novo serine/glycine synthesis and essential amino acids intake, promoting breast cancer growth. Mechanistically, mutant p53, unlike the wild-type counterpart, induces the expression of serine-synthesis-pathway enzymes and L-type amino acid transporter 1 (LAT1)/CD98 heavy chain heterodimer.

View Article and Find Full Text PDF

Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood.

View Article and Find Full Text PDF

Cellular choices are determined by developmental and environmental stimuli through integrated signal transduction pathways. These critically depend on attainment of proper activation levels that in turn rely on post-translational modifications (PTMs) of single pathway members. Among these PTMs, post-phosphorylation prolyl-isomerization mediated by PIN1 represents a unique mechanism of spatial, temporal and quantitative control of signal transduction.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples.

View Article and Find Full Text PDF

The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs.

View Article and Find Full Text PDF

Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease.

View Article and Find Full Text PDF

Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties.

View Article and Find Full Text PDF

The DNA-damage response (DDR) ensures genome stability and proper inheritance of genetic information, both of which are essential to survival. It is presently unclear to what extent other signaling pathways modulate DDR function. Here we show that Notch receptor binds and inactivates ATM kinase and that this mechanism is evolutionarily conserved in Caenorhabditis elegans, Xenopus laevis and humans.

View Article and Find Full Text PDF

Background: The modest efficacy of available therapies for Hepatocellular carcinoma (HCC) indicates the need to develop novel therapeutic approaches. For the proteasome inhibitor Bortezomib (BZB), potentially attractive for HCC treatment, the mechanism of action is largely unknown. The BZB effect on E2Fs and the E2Fs control on the peptidylproline cis-trans isomerase (Pin1), prompted us to explore the BZB effect on the Pin1-E2F1 axis.

View Article and Find Full Text PDF

Background: The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling.

View Article and Find Full Text PDF

Aim: Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease.

View Article and Find Full Text PDF

Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia-ectrodactyly-cleft lip/palate (EEC) syndrome, comprising SHFM.

View Article and Find Full Text PDF

A nephroblastoma is a tumor arising from metanephric blastema occurring in childhood. Among laboratory rodents, nephroblastoma has been frequently reported in rats, but it remains exceedingly rare in mice. The present work describes a nephroblastoma in a young mouse homozygous for the specific Trp53 R172H point mutation coupled with targeted deletion of the Pin1 gene.

View Article and Find Full Text PDF
Article Synopsis
  • Mammary epithelial stem cells are crucial for tissue integrity, while cancer stem cells contribute to treatment resistance and relapse in breast cancer.
  • The study reveals that the prolyl-isomerase Pin1 influences both normal and cancer stem cells by preventing the degradation of Notch1 and Notch4, which are important for cell fate decisions.
  • High levels of Pin1 in human breast cancers promote Notch signaling despite the presence of Fbxw7α, leading to increased cancer stem cell self-renewal and poor patient outcomes; targeting Pin1 may improve treatment responses and reduce aggressive cancer traits.
View Article and Find Full Text PDF

Giant cell tumor of bone (GCTB) is a common primary neoplasm of bone characterized by distinctive clinicopathological features. GCTB is exceedingly rare in nonhuman species, and it has been sporadically reported in cats, dogs, rats, and birds. This report describes a primary murine bone tumor that shares striking clinicopathological similarities with human GCTB.

View Article and Find Full Text PDF

TP53 missense mutations dramatically influence tumor progression, however, their mechanism of action is still poorly understood. Here we demonstrate the fundamental role of the prolyl isomerase Pin1 in mutant p53 oncogenic functions. Pin1 enhances tumorigenesis in a Li-Fraumeni mouse model and cooperates with mutant p53 in Ras-dependent transformation.

View Article and Find Full Text PDF

Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation.

View Article and Find Full Text PDF

The peptidyl-prolyl-isomerase Pin1 interacts with phosphorylated proteins, altering their conformation. The retinoic acid receptor RARalpha and the acute-promyelocytic-leukemia-specific counterpart PML-RARalpha directly interact with Pin1. Overexpression of Pin1 inhibits ligand-dependent activation of RARalpha and PML-RARalpha.

View Article and Find Full Text PDF

Signalling through Notch receptors requires ligand-induced cleavage to release the intracellular domain, which acts as a transcriptional activator in the nucleus. Deregulated Notch1 signalling has been implicated in mammary tumorigenesis; however the mechanisms underlying Notch activation in breast cancer remain unclear. Here, we demonstrate that the prolyl-isomerase Pin1 interacts with Notch1 and affects Notch1 activation.

View Article and Find Full Text PDF

It has been shown that the expression of osteoprotegerin (OPG) is up-regulated in tumor-associated endothelial cells as well as in the sera of patients affected by both solid tumors and hematologic malignancies. We now report that sera of p53(-/-) mice contain higher levels of OPG with respect to p53(+/+) mice and that endothelial cells, in which p53 was knocked down by siRNA, release increased levels of OPG with respect to mock-transfected cells. Conversely, activation of the p53 pathway by the MDM2 small molecule antagonist Nutlin-3 significantly attenuated both spontaneous and tumor necrosis factor-alpha (TNF-alpha)-induced OPG mRNA and protein release in endothelial cell cultures.

View Article and Find Full Text PDF

High Mobility Group A (HMGA) is a family of architectural nuclear factors which play an important role in neoplastic transformation. HMGA proteins are multifunctional factors that associate both with DNA and nuclear proteins that have been involved in several nuclear processes including transcription. HMGA localization is exclusively nuclear but, to date, the mechanism of nuclear import for these proteins remains unknown.

View Article and Find Full Text PDF

HMGA1 is an architectural transcription factor expressed at high levels in transformed cells and tumors. Several lines of evidence indicate that HMGA1 up-regulation is involved in the malignant transformation of thyroid epithelial cells. However, the mechanisms underlying the effect of HMGA1 on thyroid cancer cell phenotype are not fully understood.

View Article and Find Full Text PDF