Commercial SSZ-13 zeolite with different n(Si)/n(Al) ratios and from different suppliers were subjected to a post-synthetic treatment in order to create mesopores of up to 15 nm. Furthermore, the materials were modified with copper ions and thoroughly physico-chemically characterized. The modified textural properties varied the nature of copper species, and thus, activity in the selective catalytic reduction of NO with ammonia (NH-SCR-DeNO).
View Article and Find Full Text PDFWe present a quantitative comparison of the dynamic structure factors from unentangled and strongly entangled poly(butylene oxide) (PBO) melts. As expected, the low molecular weight PBO displays Rouse dynamics, however, with very significant subdiffusive center-of-mass diffusion. The spectra from high molecular weight entangled PBO can be very well described by the dynamic structure factor based on the concept of local reptation, including the Rouse dynamics within the tube and allowing for non-Gaussian corrections.
View Article and Find Full Text PDFIn the present work, a new statistical theory is developed to describe adsorption and desorption in mesoporous materials (pore sizes ranging from 2 to 50 nm) represented by pore networks in the form of Bethe lattices. The new theory is an extension of a previous theory applied for Statistically Disordered Chain Model (SDCM) structures and incorporates the cooperative effects emerging during phase transitions in pore networks. The theory is validated against simulations and algorithmic models that describe sorption of lattice and real fluids in Bethe lattices.
View Article and Find Full Text PDFA nuclear magnetic resonance (NMR) study of a pore opening in amino-functionalized metal-organic framework (MOF) MIL-53(Al) in response to methane pressure variation is presented. Variations of both NMR signal intensities and transversal relaxation rates for methane are found to reveal hysteretic structural transitions in the MOF material, which are smeared out over broad pressure ranges. Experiments with pressure reversals upon an incomplete adsorption/desorption gave deeper insight into the microscopic transition mechanisms.
View Article and Find Full Text PDFAlterations of fluid phase transitions in porous materials are conventionally employed for the characterization of mesoporous solids. In the first approximation, this may be based on the application of the Kelvin equation for gas-liquid and the Gibbs-Thomson equation for solid-liquid phase equilibria for obtaining pore size distributions. Herein, we provide a comparative analysis of different phase coexistences measured in mesoporous silica solids with different pore sizes and morphology.
View Article and Find Full Text PDFNitrogen sorption and melting and freezing of water in a small pore size mesoporous glass with irregular pore structure is studied. The analysis of the experimentally obtained data is performed using the recently developed serially connected pore model (SCPM). The model intrinsically incorporates structural disorder by introducing coupling between nucleation and phase growth mechanisms in geometrically disordered mesopore spaces.
View Article and Find Full Text PDFCollagen accounts for the major extracellular matrix (ECM) component in many tissues and provides mechanical support for cells. Magnetic Resonance (MR) Imaging, MR based diffusion measurements and MR Elastography (MRE) are considered sensitive to the microstructure of tissues including collagen networks of the ECM. However, little is known whether water diffusion interacts with viscoelastic properties of tissues.
View Article and Find Full Text PDFThrough IR microimaging the spatially and temporally resolved development of the CO concentration in a ZIF-8@6FDA-DAM mixed matrix membrane (MMM) was visualized during transient adsorption. By recording the evolution of the CO concentration, it is observed that the CO molecules propagate from the ZIF-8 filler, which acts as a transport "highway", towards the surrounding polymer. A high-CO -concentration layer is formed at the MOF/polymer interface, which becomes more pronounced at higher CO gas pressures.
View Article and Find Full Text PDFFluids confined in mesoporous solids exhibit a wide range of physical behavior including rich phase equilibria. While a notable progress in their understanding has been achieved for fluids in materials with geometrically ordered pore systems, mesoporous solids with complex pore geometries still remain a topic of active research. In this work we study phase transitions occurring in statistically disordered linear chains of pores with different pore sizes.
View Article and Find Full Text PDFNanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules.
View Article and Find Full Text PDFAdding mesopore networks in microporous materials using the principles of hierarchical structure design is recognized as a promising route for eliminating their transport limitations and, therefore, for improving their value in technological applications. Depending on the routes of physico-chemical procedures or post-synthesis treatments used, very different geometries of the intentionally-added transport mesopores can be obtained. Understanding the structure-dynamics relationships in these complex materials with multiple porosities under different thermodynamical conditions remains a challenging task.
View Article and Find Full Text PDFWe apply dynamic mean field theory to study relaxation dynamics for lattice models of fluids confined in linear pores with side streams and with ink bottle structures. Our results show several mechanisms for how the pore structure affects the dynamics, and these are amplified in longer pores. An important conclusion of this work is that features such as side streams and ink bottle segments can substantially slow the equilibration of fluids confined in long pore systems where the pore lengths can be more than 100 micrometers, such as in porous silicon.
View Article and Find Full Text PDFThe development of water-mediated proton-conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal-organic framework (MOF) [La3L4(H2O)6]Cl⋅x H2O (1, L(2-) = 4-(4H-1,2,4-triazol-4-yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.
View Article and Find Full Text PDFPulsed field gradient nuclear magnetic resonance (NMR) diffusion studies are performed by using cyclohexane to probe transport properties in a NaX-type zeolite with a hierarchical pore structure (house-of-cards-like assemblies of mesoporous nanosheets), which is compared with a purely microporous sample. With guest loadings chosen to ensure saturation of the micropores, and the meso- and macropores left essentially unoccupied, guest diffusion is shown to be enhanced by almost one order of magnitude, even at room temperature. Diffusivity enhancement is further increased with increasing temperature, which may, therefore, be unambiguously attributed to the contribution of mass transfer in the meso- and macropores.
View Article and Find Full Text PDFWe have studied the filling dynamics of model capillaries using dynamic mean field theory for a confined lattice gas and Kawasaki dynamics simulations. We have found two different scenarios for filling of capped nanocapillaries from the vapor phase. As compared to channels with macroscopic width, in which the filling process occurs by the detachment of the meniscus from the cap, in mesoscopic channels there is an alternative mechanism associated with the spontaneous condensation of the liquid close to the pore opening and its subsequent growth toward the closed pore end.
View Article and Find Full Text PDFThe pseudomorphic transformation of spherical silica gel (LiChrospher Si 60) into MCM-41 was achieved by treatment at 383 K for 24 h with an aqueous solution of cetyltrimethylammonium hydroxide (CTAOH) instead of hexadecyltrimethylammonium bromide (CTABr) and NaOH. The degree of transformation was varied via the ratio of CTAOH solution to initial silica gel rather than synthesis duration. The transformed samples were characterized by N₂ sorption at 77 K, mercury intrusion porosimetry, X-ray diffraction (XRD) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFThe presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release.
View Article and Find Full Text PDFWe introduce the various options of experimentally observing mass transfer in mesoporous materials. It shall be demonstrated that the exploration of the underlying mechanisms is excessively complicated by the complexity of the phenomena contributing to molecular transport in such systems and their mutual interdependence. Microscopic diffusion measurement by the pulsed field gradient (PFG) technique of NMR offers the unique option to measure both the relative amount of molecules adsorbed and the probability distribution of their displacements over space scales relevant to fundamental adsorption science just as for technological application.
View Article and Find Full Text PDFWe have exploited the pulsed field gradient (PFG) technique of NMR to measure molecular diffusion in aqueous solutions of a mixture of dextran molecules. From detailed studies by fluorescence correlation spectroscopy (FCS), the lighter component of such mixtures is known to undergo subdiffusion, up to diffusion path lengths on the order of 0.5 μm.
View Article and Find Full Text PDFWith the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR) for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.
View Article and Find Full Text PDFMicro-imaging is employed to monitor the evolution of intra-crystalline guest profiles during molecular adsorption and desorption in cation-free zeolites AlPO-LTA. The measurements are shown to provide direct evidence on the rate of intra-crystalline diffusion and surface permeation and their inter-relation. Complemented by PFG NMR and integral IR measurements, a comprehensive overview of the diffusivities of light hydrocarbons in this important type of host materials is provided.
View Article and Find Full Text PDFSpecially synthesized extra-large crystallites of zeolite LTA with intentionally added mesoporosity are used for an in-depth study of guest diffusion in hierarchical nanoporous materials by the pulsed field gradient NMR technique. Using propane as a guest molecule, intracrystalline mass transfer is demonstrated to be adequately described by a single effective diffusivity resulting from the weighted average of the diffusivities in the two (micro- and meso-) pore spaces. Gas-kinetic order-of-magnitude estimates of the diffusivities are in satisfactory agreement with the experimental data and are thus shown to provide a straightforward means for predicting and quantifying the benefit of hierarchically structured nanoporous materials in comparison with their purely microporous equivalent.
View Article and Find Full Text PDFThe virtual laboratory allows for computer experiments that are not accessible via real experiments. In this work, three previously obtained charge sets were employed to study the influence of hydrogen bonding on imidazolium-based ionic liquids in molecular dynamics simulations. One set provides diffusion coefficients in agreement with the experiment and is therefore a good model for real-world systems.
View Article and Find Full Text PDFHeterogeneous diffusion processes occur in many different fields such as transport in living cells or diffusion in porous media. A characterization of the transport parameters of such processes can be achieved by ensemble-based methods, such as pulsed field gradient nuclear magnetic resonance (PFG NMR), or by trajectory-based methods obtained from single-particle tracking (SPT) experiments. In this paper, we study the general relationship between both methods and its application to heterogeneous systems.
View Article and Find Full Text PDF