The Dilleniaceae is known to produce nectarless flowers pollinated by bees, but the fact that bats ingest Dillenia biflora pollen led us to question pollination assumptions for these trees. We aimed to identify the pollinators of D. biflora, check for nectar presence, and investigate potential for cleistogamy and global prevalence of this pollination system.
View Article and Find Full Text PDFSelenium (Se) has been mobilised by leaching from coal and associated waste rock exposed by mining activities in Western Canada, with deleterious impact on aquatic wildlife. Waste rock characterisation indicates that up to 7% of the Se, as Se(IV), may be associated with organic matter, with ≈9%, as Se(0), associated with euhedral pyrite. Small 1-2 µm mineral particles with average Se concentration of 1.
View Article and Find Full Text PDFAcid and metalliferous drainage (AMD) is a major environmental issue resulting largely from exposure to weathering of mine wastes containing pyrite (FeS). At-source strategies to reduce the rate of formation of AMD have potential to be more cost-effective and sustainable than post-generation downstream treatments. The objective of this study was to examine the efficacy of geochemical and microbial treatments for at-source control through pyrite surface passivation.
View Article and Find Full Text PDFChalcopyrite, galena, and sphalerite commonly coexist with pyrite in sulfidic waste rocks. The aim of this work was to investigate their impact, potentially by galvanic interaction, on pyrite oxidation and acid generation rates under simulated acid and metalliferous drainage conditions. Kinetic leach column experiments using single-minerals and pyrite with one or two of the other sulfide minerals were carried out at realistic sulfide contents (total sulfide <5.
View Article and Find Full Text PDFThe aim of this study was to determine the combined effect of galvanic interaction and silicate addition on the dissolution of pyrite, the major contributor to acid and metalliferous drainage (AMD). Single (pyrite, sphalerite, and galena)- and bi-sulfide (pyrite-sphalerite and pyrite-galena) batch dissolution experiments were carried out with addition of 0.8 mM dissolved silicate for comparison to previously published data.
View Article and Find Full Text PDFThe aim of this study was to test the performance of a novel method for acid rock drainage (ARD) control through the formation of Al(OH)-doped passivating surface layers on pyrite. At pH 2.0 and 4.
View Article and Find Full Text PDFAlthough the acid generating properties of pyrite (FeS) have been studied extensively, the impact of galvanic interaction on pyrite oxidation, and the implications for acid and metalliferous drainage, remain largely unexplored. The relative galvanic effects on pyrite dissolution were found to be consistent with relative sulfide mineral surface area ratios with sphalerite (ZnS) having greater negative impact in batch leach tests (sulfide minerals only, controlled pH) and galena (PbS) having greater negative impact in kinetic leach column tests (KLCs, uncontrolled pH, >85 wt% silicate minerals). In contrast the presence of pyrite resulted consistently in greater increase in galena than sphalerite leaching suggesting that increased anodic leaching is dependent on the difference in anodic and cathodic sulfide mineral rest potentials.
View Article and Find Full Text PDFAcid and metalliferous release occurring when sulfide (principally pyrite)-containing rock from mining activities and from natural environments is exposed to the elements is acknowledged as a major environmental problem. Acid rock drainage (ARD) management is both challenging and costly for operating and legacy mine sites. Current technological solutions are expensive and focused on treating ARD on release rather than preventing it at source.
View Article and Find Full Text PDFEnviron Sci Technol
October 2014
Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4.
View Article and Find Full Text PDFThe acid base account (ABA), commonly used in assessment of mine waste materials, relies in part on calculation of potential acidity from total sulfur measurements. However, potential acidity is overestimated where organic sulfur, sulfate sulfur and some sulfide compounds make up a substantial portion of the sulfur content. The chromium reducible sulfur (CRS) method has been widely applied to assess reduced inorganic sulfur forms in sediments and acid sulfate soils, but not in ABA assessment of mine wastes.
View Article and Find Full Text PDFThe result of leaching of a 75% acid rock/25% limestone column with limestone-saturated solution has shown that the pH of the effluent recovered from 2.5, after apparent loss of acid neutralizing capacity after 4 years with water leaching, to pH 7 in less than 3 years. Bulk assay results, XRD and SEM/EDS analyses of samples from the column at 384 weeks (pH 3.
View Article and Find Full Text PDFIn the long-term phase of an acid rock drainage (ARD) evolution profile, after any short-term neutralisation capacity provided by carbonate minerals is exhausted, the net acid release is a product of a declining acid generation rate (AGR) and a slower, long-term acid neutralisation rate mainly provided by gangue silicate minerals. At some point, the AGR and the non-carbonate acid neutralisation rate (ANRnc) will be similar. Matching of the AGR and ANRnc near 10mg H(2)SO(4)/kg/week is demonstrated in data from 10-year columns.
View Article and Find Full Text PDFIn acid base accounting (ABA) estimates of acid mine wastes, the acid potential (AP) estimate can be improved by using the net carbonate value (NCV) reactive sulfide S method rather than total S assay methods but this does not give recovery of potentially acid producing ferrous and ferric sulfates present in many wastes. For more accurate estimation of AP, an effective, site-specific method to quantify acid sulfate salts, such as jarosite and melanterite, in waste rocks has been developed and tested on synthetic and real wastes. The SPOCAS (acid sulfate soils) methods have been modified to an effective, rapid method to speciate sulfate forms in different synthetic waste samples.
View Article and Find Full Text PDFWe use a selection of wood-based and coconut-based activated carbons to investigate the factors controlling the removal of the hepatotoxin microcystin-LR (m-LR) from aqueous solutions. The wood carbons contain both micropores and mesopores. The coconut carbons contain micropores only.
View Article and Find Full Text PDF