Background: 22q11.2 deletion syndrome (22qDS) manifests with myriad symptoms, including multiple neuropsychiatric disorders. Complications associated with the polygenic haploinsufficiency make 22qDS symptoms particularly difficult to manage with traditional therapeutic approaches.
View Article and Find Full Text PDFTemporal lobe epilepsy is associated with significant structural pathology in the hippocampus. In the dentate gyrus, the summative effect of these pathologies is massive hyperexcitability in the granule cells, generating both increased seizure susceptibility and cognitive deficits. To date, therapeutic approaches have failed to improve the cognitive symptoms in fully developed, chronic epilepsy.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) currently affects 1 in 59 children, although the aetiology of this disorder remains unknown. Faced with multiple seemingly disparate and noncontiguous neurobiological alterations, Rubenstein and Merzenich hypothesized that imbalances between excitatory and inhibitory neurosignaling (E/I imbalance) underlie ASD. Since this initial statement, there has been a major focus examining this exact topic spanning both clinical and preclinical realms.
View Article and Find Full Text PDFStudies suggest that individuals with autism spectrum disorder (ASD) exhibit altered electrophysiological alpha to gamma phase-amplitude coupling (PAC). Preliminary reports with small samples report conflicting findings regarding the directionality of the alpha to gamma PAC alterations in ASD. The present study examined resting-state activity throughout the brain in a relatively large sample of 119 children with ASD and 47 typically developing children.
View Article and Find Full Text PDFAltered gamma-band electrophysiological activity in individuals with autism spectrum disorder (ASD) is well documented, and analogous gamma-band alterations are recapitulated in several preclinical murine models relevant to ASD. Such gamma-band activity is hypothesized to underlie local circuit processes. Gamma-band cross-frequency coupling (CFC), a related though distinct metric, interrogates local neural circuit signal integration.
View Article and Find Full Text PDFApproximately one in 45 children have been diagnosed with Autism Spectrum Disorder (ASD), which is characterized by social/communication impairments. Recent studies have linked a subset of familial ASD to mutations in the Protocadherin 10 (Pcdh10) gene. Additionally, Pcdh10's expression pattern, as well as its known role within protein networks, implicates the gene in ASD.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is hypothesized to arise from imbalances between excitatory and inhibitory neurotransmission (E/I imbalance). Studies have demonstrated E/I imbalance in individuals with ASD and also corresponding rodent models. One neural process thought to be reliant on E/I balance is gamma-band activity (Gamma), with support arising from observed correlations between motor, as well as visual, Gamma and underlying GABA concentrations in healthy adults.
View Article and Find Full Text PDFBackground: Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD.
View Article and Find Full Text PDFBackground: Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design.
View Article and Find Full Text PDFBackground: Findings of auditory abnormalities in children with autism spectrum disorder (ASD) include delayed superior temporal gyrus auditory responses, pre- and post-stimulus superior temporal gyrus (STG) auditory oscillatory abnormalities, and atypical hemispheric lateralization. These abnormalities are likely associated with abnormal brain maturation. To better understand changes in brain activity as a function of age, the present study investigated associations between age and STG auditory time-domain and time-frequency neural activity.
View Article and Find Full Text PDFA single nucleotide polymorphism (SNP) in the human μ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in a variety of drug addiction and pain sensitivity phenotypes; however, the extent of these adaptations and the mechanisms underlying these associations remain elusive. To clarify the functional mechanisms linking the OPRM1 A118G SNP to altered phenotypes, we used a mouse model possessing the equivalent nucleotide/amino acid substitution in the Oprm1 gene. In order to investigate the impact of this SNP on circuit function, we used voltage-sensitive dye imaging in hippocampal slices and in vivo electroencephalogram recordings of the hippocampus following MOPR activation.
View Article and Find Full Text PDFAutism spectrum disorders (ASD) are characterized by social impairments and restricted/stereotyped behaviors and currently affect an estimated 1 in 68 children aged 8 years old. While there has been substantial recent focus on ASD in research, both the biological pathology and, perhaps consequently, a fully effective treatment have yet to be realized. What has remained throughout is the hypothesis that ASD has neurobiological underpinnings and the observation that both the phenotypic expression and likely the underlying etiology is highly heterogeneous.
View Article and Find Full Text PDFMost recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity.
View Article and Find Full Text PDFHuntington's disease (HD), a devastating neurodegenerative disorder caused by a CAG repeat expansion on the HTT gene located on chromosome 4, is associated with a characteristic pattern of progressive cognitive dysfunction known to involve early deficits in executive function. A modified Go/No-go successive discrimination task was designed to assess the type of online response control/executive function known to be disrupted in patients with HD. The present studies show that this simple discrimination assay revealed early and robust deficits in two mouse models of HD, the zQ175 KI mouse (deficits from 28 weeks of age) and the R6/2 mouse, carrying ~240 CAG repeats (deficits from 9 weeks of age).
View Article and Find Full Text PDFThe genome of the Bacterial Artificial Chromosome (BAC) transgenic mouse model of Huntington's Disease (BAC HD) contains the 170 kb human HTT locus modified by the addition of exon 1 with 97 mixed CAA-CAG repeats. BAC HD mice present robust behavioral deficits in both the open field and the accelerating rotarod tests, two standard behavioral assays of motor function. BAC HD mice, however, also typically present significantly increased body weights relative to wildtype littermate controls (WT) which potentially confounds the interpretation of any motor deficits associated directly with the effects of mutant huntingtin.
View Article and Find Full Text PDFPhenotyping with traditional behavioral assays constitutes a major bottleneck in the primary screening, characterization, and validation of genetic mouse models of disease, leading to downstream delays in drug discovery efforts. We present a novel and comprehensive one-stop approach to phenotyping, the PhenoCube™. This system simultaneously captures the cognitive performance, motor activity, and circadian patterns of group-housed mice by use of home-cage operant conditioning modules (IntelliCage) and custom-built computer vision software.
View Article and Find Full Text PDFApathy, characterized by generally reduced interest in and likelihood to perform goal-directed actions, is a recognized symptom of Huntington's disease (HD), a devastating neurological disorder caused by a CAG repeat expansion of the Htt gene located on chromosome 4. The present experiments used a modified progressive ratio task that incorporated a fixed-ratio schedule of reinforcement component to assess consummatory behavior, and a progressive-ratio schedule component that required increasing numbers of lever-presses for successive reinforcers (0.01 ml of evaporated milk).
View Article and Find Full Text PDFDopamine D2 and adenosine A(2A) receptors interact to regulate aspects of motor and motivational function, and it has been suggested that adenosine A(2A) antagonists could be useful for the treatment of parkinsonism and depression. The present experiments were performed to characterize the effects of Lu AA47070, which is a phosphonooxymethylene prodrug of a potent and selective adenosine A(2A) receptor antagonist, for its ability to reverse the motor and motivational effects of D2 antagonism. In the first group of studies, Lu AA47070 (3.
View Article and Find Full Text PDFHuntington's disease (HD) is a progressive neurodegenerative disease marked by psychiatric and motor problems. Recently, these findings have been extended to deficits in sleep and circadian function that can be observed in HD patients and in HD mouse models, with abnormal sleep patterns correlating with symptom severity in patients. Here, we studied the behavior of the BAC HD mouse model using an 24/7 automated system; the results indicate significant lengthening of the circadian period in the mutant mice.
View Article and Find Full Text PDFMouse models of Huntington's disease (HD) were trained to acquire one of two simple instrumental responses (a lever press or a nosepoke) to obtain food reinforcement. Animals from several HD strains revealed apparently progressive deficits in this task, being significantly less able than littermate controls to perform the required responses, at ages where motor function is only mildly affected. These data could provide a simple way to measure learning deficits in these mouse models, likely related to the characteristic pattern of neural damage observed in HD mouse models.
View Article and Find Full Text PDFForebrain dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation. Adenosine A(2A) antagonists reverse many of the behavioral effects of DA antagonists, and A(2A) receptors are co-localized with D(2) receptors on striatal medium spiny neurons. The present work was undertaken to determine if the ability of an A(2A) antagonist, a non-selective adenosine antagonist, or an A(1) antagonist to reverse the locomotor effects of DA blockade in rats differed depending upon whether D(1) or D(2) family receptors were being antagonized.
View Article and Find Full Text PDFRationale: Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Research involving choice tasks has shown that rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements and instead select less effortful food-seeking behaviors.
Objective: Previous work showed that adenosine A(2A) antagonism can reverse the effects of the DA antagonist haloperidol in an operant task that assesses effort-related choice.
Rationale: Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A(2A) receptors.
View Article and Find Full Text PDF