Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention.
View Article and Find Full Text PDFThe vertical profile of atmospheric temperature is a principal state variable to study atmospheric stability. A lidar system, constructed using a 355 nm Nd:YAG laser transmitter, measures the temperature profile using the rotational Raman technique. In comparison with traditional Raman lidar, the major innovations are the use of a low peak power and high repetition rate laser to achieve eye-safe operation in a compact reliable instrument and the use of an angle tuning filter to select operating wavelengths.
View Article and Find Full Text PDFThe resonance enhanced Raman spectra in the 1B2u mode of the forbidden benzene electronic transition band, ~230-270 nm, has been investigated. Resonance enhanced Raman scattering in both liquid benzene and liquid toluene exhibit the greatest enhancement when the wavelength of excitation is tuned to the vapor-phase absorption peaks; even though the sample volume is in a liquid state. Raman signals for the symmetric breathing mode of the carbon ring are found to be resonantly enhanced by several orders of magnitude (>500X) with deep UV excitation compared to non-resonant visible excitation.
View Article and Find Full Text PDF