Publications by authors named "Russell Petter"

Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292).

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) inhibitors interrupt EGFR-dependent cellular signaling pathways that lead to accelerated tumor growth and proliferation. Mutation of a threonine in the inhibitor binding pocket, known as the "gatekeeper", to methionine (T790M) confers acquired resistance to several EGFR-selective inhibitors. We studied interactions between EGFR inhibitors and the gatekeeper residues of the target protein.

View Article and Find Full Text PDF

Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors.

View Article and Find Full Text PDF

Patients with non-small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFR(WT)).

View Article and Find Full Text PDF

Unlabelled: Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor.

View Article and Find Full Text PDF

Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed.

View Article and Find Full Text PDF

PI3Kα has been identified as an oncogene in human tumors. By use of rational drug design, a targeted covalent inhibitor 3 (CNX-1351) was created that potently and specifically inhibits PI3Kα. We demonstrate, using mass spectrometry and X-ray crystallography, that the selective inhibitor covalently modifies PI3Kα on cysteine 862 (C862), an amino acid unique to the α isoform, and that PI3Kβ, -γ, and -δ are not covalently modified.

View Article and Find Full Text PDF

CBS-QB3 enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,β-unsaturated ketones. Compared with addition to methyl vinyl ketone, the reaction becomes 1-3 kcal mol(-1) less exothermic when an α-Me, β-Me, or β-Ph substituent is present on the C=C bond. The lower exothermicity for the substituted enones occurs because the substituted reactant is stabilized more by hyperconjugation or conjugation than the product is stabilized by branching.

View Article and Find Full Text PDF

Covalent drugs have proved to be successful therapies for various indications, but largely owing to safety concerns, they are rarely considered when initiating a target-directed drug discovery project. There is a need to reassess this important class of drugs, and to reconcile the discordance between the historic success of covalent drugs and the reluctance of most drug discovery teams to include them in their armamentarium. This review surveys the prevalence and pharmacological advantages of covalent drugs, discusses how potential risks and challenges may be addressed through innovative design, and presents the broad opportunities provided by targeted covalent inhibitors.

View Article and Find Full Text PDF

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.

View Article and Find Full Text PDF

In the past decade tremendous progress has been made toward a new class of therapeutics termed 'targeted covalent drugs', in which structure-based approaches are employed to create small molecules that inactivate their protein target through targeted covalent attachment to a specific cysteine. In the kinase field, this approach is demonstrating promise in overcoming the potency, selectivity, and efficacy challenges currently faced by reversible kinase inhibitors, with several advancing into late stage clinical testing. This design paradigm has been successfully applied to making drug candidates for epidermal growth factor receptor (EGFR), Her2, and Bruton's tyrosine kinase (Btk).

View Article and Find Full Text PDF

Structural modification of naturally occurring beta-lactams and beta-lactones is a highly effective strategy for generating drugs for treating bacterial infections, cancer, obesity, and hyperlipidemia. These drugs acylate catalytic amino acids (serine, threonine, or cysteine) in enzyme targets such as penicillin-binding proteins (PBPs), beta-lactamases, lipases, HMG-CoA reductase, fatty acid synthetase, and the 20S proteasome. Optimally performing drugs combine features of high target affinity, chemoselective reactivity, and high stability of the acylated target protein.

View Article and Find Full Text PDF

Novel tricyclic imidazoline antagonists of the adenosine A1 receptor are described. For key compounds, the selectivity level over other adenosine receptor subtypes is examined along with their in vivo effects in a rat diuresis model. Compound 14, the (R)-isomer of 7,8-dihydro-8-ethyl-2-(4-bicyclo[2.

View Article and Find Full Text PDF

In the search for a selective adenosine A1 receptor antagonist with greater aqueous solubility than the compounds currently in clinical trials as diuretics, a series of 1,4-substituted 8-cyclohexyl and 8-bicyclo[2.2.2]octylxanthines were investigated.

View Article and Find Full Text PDF

During the search for second-generation adenosine A(1) receptor antagonist alternatives to the clinical candidate 8-(3-oxa-tricyclo[3.2.1.

View Article and Find Full Text PDF

PEGylation of IFN-alpha has been used successfully to improve the pharmacokinetic properties and efficacy of the drug. To prepare a PEGylated form of human interferon-beta-1a (IFN-beta-1a) suitable for testing in vivo, we have synthesized 20 kDa mPEG-O-2-methylpropionaldehyde and used it to modify the N-terminal alpha-amino group of the cytokine. The PEGylated protein retained approximately 50% of the activity of the unmodified protein and had significantly improved pharmacokinetic properties following intravenous administration in rats.

View Article and Find Full Text PDF

Potent and selective antagonists of the adenosine A2A receptor often contain a nitrogen-rich fused-ring heterocyclic core. Replacement of the core with an isomeric ring system has previously been shown to improve target affinity, selectivity, and in vivo activity. This paper describes the preparation, by a novel route, of A2A receptor antagonists containing the [1,2,4]triazolo[1,5-a]pyrazine nucleus, which is isomeric with the [1,2,4]triazolo[1,5-c]pyrimidine core of a series of known A2A antagonists with in vivo activity in animal models of Parkinson's disease.

View Article and Find Full Text PDF

Piperazine derivatives of 2-furanyl[1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been demonstrated to be potent and selective adenosine A(2a) receptor antagonists with oral activity in rodent models of Parkinson's disease. We have replaced the piperazinyl group with a variety of linear, monocyclic, and bicyclic diamines. Of these diamines, (R)-2-(aminomethyl)pyrrolidine is a particularly potent and selective replacement for the piperazinyl group.

View Article and Find Full Text PDF

A novel [1,2,4]triazolo[1,5-a]pyrazine core was synthesized and coupled with terminal acetylenes. The structure-activity relationship of the alkynes from this novel template was studied for their in vitro and in vivo adenosine A(2A) receptor antagonism. Selected compounds from this series were shown to have potent in vitro and in vivo activities against adenosine A(2A) receptor.

View Article and Find Full Text PDF

A series of bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines was synthesized. Some of these analogues show high affinity and excellent selectivity for adenosine A(2a) receptor versus the adenosine A(1) receptor. Structure-activity-relationship (SAR) studies based on octahydropyrrolo[1,2-a]pyrazine and octahydropyrido[1,2-a]pyrazine with various capping groups are reported.

View Article and Find Full Text PDF

Asthma, a chronic inflammatory disease of the airways, is a significant burden on our healthcare system. There is high unmet need for treatments directed towards the underlying causes of the disease. The cell surface integrin VLA-4 (very late antigen-4; alpha4beta1; CD49d/CD29) plays an important role in the trafficking of white blood cells to sites of inflammation and represents an exciting target for the development of novel anti-inflammatory drugs for the treatment of asthma.

View Article and Find Full Text PDF

Piperazine derivatives of 2-furanyl[1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been shown to be potent and selective adenosine A(2a) receptor antagonists. We now demonstrate that potent and selective A(2a) receptor antagonists could still be obtained when the arylpiperazines are separated from the triazolotriazine core structure by an ethylenediamine spacer. Selected analogs bearing this triazolotriazine or the related triazolopyrimidine core structure have been found to be orally active in a mouse catalepsy model of Parkinson's disease.

View Article and Find Full Text PDF

Piperazine and (R)-2-(aminomethyl)pyrrolidine derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been shown to be potent and selective adenosine A(2a) receptor antagonists. We have replaced the triazolotriazine core structure with two different heterocyclic cores. One of these, the one deriving from [1,2,4]triazolo[1,5-c]pyrimidine, appears to be particularly effective and selected analogs from this series have been shown to be orally active in a mouse catalepsy model of Parkinson's disease.

View Article and Find Full Text PDF

The [1,2,4]triazolo[1,5-a]triazine derivative 3, more commonly known in the field of adenosine research as ZM-241385, has previously been demonstrated to be a potent and selective adenosine A2a receptor antagonist, although with limited oral bioavailability. This [1,2,4]triazolo[1,5-a]triazine core structure has now been improved by incorporating various piperazine derivatives. With some preliminary optimization, the A2a binding affinity of some of the best piperazine derivatives is almost as good as that of compound 3.

View Article and Find Full Text PDF

To develop a novel route for the scaleable synthesis of the chiral xanthine CVT-124 (1, aka. BG9719), a method for the late stage pyrimidine ring closure of the nitrogen-protected endo 2-norbornenyl imidazole 3 was developed. The three-component coupling of benzylamine, 2-cyanoglycine ethyl ester (4), and methyl 5-norbornene-2-carboximidate hydrochloride (5) was demonstrated to achieve 3 in 23-46% isolated yields.

View Article and Find Full Text PDF