Publications by authors named "Russell P Wolfe"

Thorough understanding of the effects of shear stress on stem cells is critical for the rationale design of large-scale production of cell-based therapies. This is of growing importance as emerging tissue engineering and regenerative medicine applications drive the need for clinically relevant numbers of both pluripotent stem cells (PSCs) and cells derived from PSCs. Here, we describe the use of a custom parallel plate bioreactor system to impose fluid shear stress on a layer of PSCs adhered to protein-coated glass slides.

View Article and Find Full Text PDF

Pluripotent embryonic stem cells (ESCs) are a potential source for cell-based tissue engineering and regenerative medicine applications, but their translation into clinical use will require efficient and robust methods for promoting differentiation. Fluid shear stress, which can be readily incorporated into scalable bioreactors, may be one solution for promoting endothelial and hematopoietic phenotypes from ESCs. Here we applied laminar shear stress to differentiating ESCs using a 2D adherent parallel plate configuration to systematically investigate the effects of several mechanical parameters.

View Article and Find Full Text PDF

Mechanobiology to date has focused on differentiated cells or progenitors, yet the effects of mechanical forces on early differentiation of pluripotent stem cells are still largely unknown. To study the effects of cellular deformation, we utilize a fluid flow bioreactor to apply steady laminar shear stress to mouse embryonic stem cells (ESCs) cultured on a two dimensional surface. Shear stress was found to affect pluripotency, as well as germ specification to the mesodermal, endodermal, and ectodermal lineages, as indicated by gene expression of OCT4, T-BRACHY, AFP, and NES, respectively.

View Article and Find Full Text PDF