Publications by authors named "Russell O Bainer"

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx.

View Article and Find Full Text PDF

Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome.

View Article and Find Full Text PDF

Tissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of β-catenin and MYC.

View Article and Find Full Text PDF

Although metastasis is the most lethal attribute of cancer, critical gaps in our knowledge of how cancer cells effectively colonize distant sites remain. For example, little is known about the cellular and molecular events that occur during the timecourse of metastatic colonization. To address this we are using the mitogen-activated protein kinase kinase 4 (MKK4) metastasis suppressor as a tool to identify these events.

View Article and Find Full Text PDF

Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors derived from prostate cancer cells preferentially localize bone remains limited.

View Article and Find Full Text PDF