Publications by authors named "Russell J Crawford"

While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate.

View Article and Find Full Text PDF

Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward and bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (HSO), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-HSO.

View Article and Find Full Text PDF

A variant of the cold spray (CS) technique was applied for the functionalization of polymer-based materials such as polydimethylsiloxane (PDMS) to improve the extent of mammalian cell interactions with these substrates. This was demonstrated by the embedment of porous titanium (pTi) into PDMS substrates using a single-step CS technique. CS processing parameters such as gas pressure and temperature were optimized to achieve the mechanical interlocking of pTi in the compressed PDMS to fabricate a unique hierarchical morphology possessing micro-roughness.

View Article and Find Full Text PDF

The mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE).

View Article and Find Full Text PDF

Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood.

View Article and Find Full Text PDF

Hypothesis: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells.

View Article and Find Full Text PDF

Membrane model systems capable of mimicking live cell membranes were used for the first time in studying the effects arising from electromagnetic fields (EMFs) of 18 GHz where membrane permeability was observed following exposure. A present lack of understanding of the mechanisms that drive such a rapid change in membrane permeabilization as well as any structural or dynamic changes imparted on biomolecules affected by high-frequency electromagnetic irradiation limits the use of 18 GHz EMFs in biomedical applications. A phospholipid, 1,2-dioleoyl--glycero-3-phosphocholine (DOPC) labelled with a fluorescent marker 1,2-dioleoyl--glycero-3-phosphoethanolamine--(lissamine rhodamine B sulfonyl) (rhodamine-DOPE) was used in constructing the giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness () values of 389 nm, 14 nm, and 2 nm, kurtosis () values of 4, 16, and 4, and skewness () values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar and values but highly disparate .

View Article and Find Full Text PDF

Plasma polymer coatings fabricated from essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g.

View Article and Find Full Text PDF

Polymer matrix composite materials have the capacity to aid the indirect transmission of viral diseases. Published research shows that respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19), can attach to polymer substrata as a result of being contacted by airborne droplets resulting from infected people sneezing or coughing in close proximity. Polymer matrix composites are used to produce a wide range of products that are "high-touch" surfaces, such as sporting goods, laptop computers and household fittings, and these surfaces can be readily contaminated by pathogens.

View Article and Find Full Text PDF

Hypothesis: The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface.

Experiments: In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings.

View Article and Find Full Text PDF

Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant (MRSA), Gram-negative , and the yeast-type using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy.

View Article and Find Full Text PDF

A major health concern of the 21 century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties.

View Article and Find Full Text PDF

Antimicrobial resistance has rendered many conventional therapeutic measures, such as antibiotics, ineffective. This makes the treatment of infections from pathogenic micro-organisms a major growing health, social, and economic challenge. Recently, nanomaterials, including two-dimensional (2D) materials, have attracted scientific interest as potential antimicrobial agents.

View Article and Find Full Text PDF

The microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis.

View Article and Find Full Text PDF

It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP-membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing.

View Article and Find Full Text PDF

The formation and proliferation of bacterial biofilms on surfaces, particularly those on biomedical devices, is a significant issue that results in substantial economic losses, presenting severe health risks to patients. Furthermore, heterogeneous biofilms consisting of different bacterial species can induce the increase in pathogenicity, and the resistance to antimicrobial agents due to the synergistic interactions between the different species. Heterogeneous bacterial biofilms are notoriously difficult to treat due to the presence of extracellular polymeric substances (EPS) and, in conjunction with the rapid rise of multi-drug resistant pathogens, this means that new solutions for anti-biofilm treatment are required.

View Article and Find Full Text PDF

A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces.

View Article and Find Full Text PDF

Environmental monitoring is necessary to ensure the overall health and conservation of an ecosystem. However, ecosystems (e.g.

View Article and Find Full Text PDF

Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials.

View Article and Find Full Text PDF

The recent rise of antibiotic resistance amongst Staphylococcus aureus (S. aureus) populations has made treating Staph-based infections a global medical challenge. Therapies that specifically target the peptidoglycan layer of S.

View Article and Find Full Text PDF

The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays.

View Article and Find Full Text PDF

The development of antimicrobial drug resistance among pathogenic bacteria and fungi is one of the most significant health issues of the 21st century. Recently, advances in nanotechnology have led to the development of nanomaterials, particularly metals that exhibit antimicrobial properties. These metal nanomaterials have emerged as promising alternatives to traditional antimicrobial therapies.

View Article and Find Full Text PDF

The fabrication of antimicrobial surfaces that exhibit enhanced activity toward a large variety of microbial species is one of the major challenges of our time. In fact, the negative effects associated with both bacterial and fungal infections are enormous, especially considering that many microbial species are developing resistance to known antibiotics. In this work, we show how a combination of a specific surface morphology and surface chemistry can create a surface that exhibits nearly 100% antimicrobial activity toward both Gram-negative and Gram-positive bacteria and fungal cells.

View Article and Find Full Text PDF

For many years, an extensive array of chemometric methods have provided a platform upon which a quantitative description of environmental conditions can be obtained. Applying chemometric methods to environmental data allows us to identify and describe the interrelations between certain environmental drivers. They also provide an insight into the interrelationships between these drivers and afford us a greater understanding of the potential impact that these drivers can place upon the environment.

View Article and Find Full Text PDF