Fungi are important infectious disease-causing agents, but are often overlooked as environmental factors in disease. We review several lines of evidence that point to a potential fungal origin of sporadic amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease. Approximately 90% cases of ALS are sporadic, and the aetiology of sporadic ALS is still unknown.
View Article and Find Full Text PDFMast cells are important in allergic inflammation and innate immunity. Antigen-induced activation via cell-surface receptors initiates a series of intracellular signaling events, leading to the secretion of inflammatory mediators. While many of the kinases involved in this process have been defined, their substrates are generally unknown.
View Article and Find Full Text PDFDynamic remodeling of the actinomyosin cytoskeleton is integral to many biological processes. It is regulated, in part, by myosin phosphorylation. Nonmuscle myosin H chain IIA is phosphorylated by protein kinase C (PKC) on Ser(1917).
View Article and Find Full Text PDFMast cells play both effector and modulatory roles in a range of allergic and immune responses. The principal function of these cells is the release of inflammatory mediators from mast cells by degranulation, which involves a complex interplay of signalling molecules. Understanding the molecular architecture underlying mast cell signalling has attracted renewed interest as the capacity for therapeutic intervention through controlling mast cell degranulation is now accepted as a viable proposition.
View Article and Find Full Text PDFModulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases.
View Article and Find Full Text PDFProtein phosphatases are integrally associated with the regulation of cellular signaling. The mechanisms underlying the specific regulatory roles are likely to be unique to each cell system. Nevertheless, analysis of phosphatase regulation in a number of systems has identified phosphatase targeting through association with a wide range of binding partners to be a fundamental mechanism of regulation.
View Article and Find Full Text PDFInotropic agents that increase the intracellular levels of cAMP have been shown to increase crossbridge turnover kinetics in intact rat ventricular muscle, as measured by the parameter f(min) (the frequency at which dynamic stiffness is minimum). These agents are also known to increase the level of phosphorylation of two candidate myofibrillar proteins: myosin binding protein C (MyBPC) and Troponin I (TnI), but have no effect on myosin light chain 2 phosphorylation (MyLC2). The aim of this study was to investigate whether the phosphorylation of TnI and/or MyBPC was responsible for the increase in crossbridge cycling kinetics (as captured by f(min)) seen with the elevation of cAMP within cardiac tissue.
View Article and Find Full Text PDFMast cells undergo cytoskeletal restructuring to allow secretory granules passage through the cortical actomyosin barrier to fuse with the plasma membrane and release inflammatory mediators. Protein phosphorylation is believed to regulate these rearrangements. Although some of the protein kinases implicated in this phosphorylation are known, the relevant protein phosphatases are not.
View Article and Find Full Text PDF