Publications by authors named "Russell Durrett"

Obesity is associated with increased cancer risk, yet the underlying mechanisms remain elusive. Obesity-associated cancers involve disruptions in metabolic and cellular pathways, which can lead to genomic instability. Repetitive DNA sequences capable of adopting alternative DNA structures (e.

View Article and Find Full Text PDF
Article Synopsis
  • ClonMapper is a new lineage-tracing system that combines DNA barcoding, single-cell RNA sequencing, and clonal isolation for detailed analysis of complex cell populations.
  • This tool helped researchers identify distinct subpopulations within a chronic lymphocytic leukemia cell line, revealing unique genetic and survival characteristics.
  • ClonMapper's ability to monitor clones throughout treatment allows for a deeper understanding of tumor evolution and how different cell groups respond to therapy.
View Article and Find Full Text PDF

A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response.

View Article and Find Full Text PDF

Natively paired sequencing (NPS) of B cell receptors [variable heavy (VH) and light (VL)] and T cell receptors (TCRb and TCRa) is essential for the understanding of adaptive immunity in health and disease. Despite many recent technical advances, determining the VH:VL or TCRb:a repertoire with high accuracy and throughput remains challenging. We discovered that the recently engineered xenopolymerase, RTX, is exceptionally resistant to cell lysate inhibition in single-cell emulsion droplets.

View Article and Find Full Text PDF

The T cell repertoire in each individual includes T cell receptors (TCRs) of enormous sequence diversity through the pairing of diverse TCR α- and β-chains, each generated by somatic recombination of paralogous gene segments. Whether the TCR repertoire contributes to susceptibility to infectious or autoimmune diseases in concert with disease-associated major histocompatibility complex (MHC) polymorphisms is unknown. Due to a lack in high-throughput technologies to sequence TCR α-β pairs, current studies on whether the TCR repertoire is shaped by host genetics have so far relied only on single-chain analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Germinal centers (GCs) are crucial for B cell affinity maturation, but the regulation of their cellular output is not fully understood.
  • Researchers identify that plasmablasts, which are important for antibody production, emerge at the interface of the GC and T zone (GTI) early in the GC response.
  • Two key factors influencing this emergence are Tfh-derived IL-21, which promotes plasmablast production, and TNFSF13 (APRIL) from specific fibroblastic reticular cells, with blocking their receptor reducing plasmablast numbers, suggesting a role in immune responses.
View Article and Find Full Text PDF

The common bed bug (Cimex lectularius) has been a persistent pest of humans for thousands of years, yet the genetic basis of the bed bug's basic biology and adaptation to dense human environments is largely unknown. Here we report the assembly, annotation and phylogenetic mapping of the 697.9-Mb Cimex lectularius genome, with an N50 of 971 kb, using both long and short read technologies.

View Article and Find Full Text PDF

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies.

View Article and Find Full Text PDF

Bacillus subtilis PS216, a strain isolated in Slovenia, has been sequenced. PS216 is transformable and forms robust biofilms, making it useful for the study of competence regulation in an undomesticated bacterium.

View Article and Find Full Text PDF

The ability to determine the gene expression pattern in low quantities of cells or single cells is important for resolving a variety of problems in many biological disciplines. A robust description of the expression signature of a single cell requires determination of the full-length sequence of the expressed mRNAs in the cell, yet existing methods have either 3' biased or variable transcript representation. Here, we report our protocols for the amplification and high-throughput sequencing of very small amounts of RNA for sequencing using procedures of either semirandom primed PCR or phi29 DNA polymerase-based DNA amplification, for the cDNA generated with oligo-dT and/or random oligonucleotide primers.

View Article and Find Full Text PDF