Chronic exposure to inorganic arsenic (iAs) is associated with the development of benign and malignant human skin lesions including nonmelanoma skin cancers. The precise arsenical form(s) responsible for this carcinogenic effect are unknown, although trivalent inorganic arsenic (iAs(III)) and two of its toxic metabolites, monomethylarsonous acid (MMA(III)) and methylarsinous acid (DMA(III)), are attractive candidates. In an effort to better understand and compare their toxic effects in the skin, we compared the global gene expression profiles of normal human epidermal keratinocytes (NHEKs) exposed to varying noncytotoxic/slightly cytotoxic concentrations of iAs(III), MMA(III), and DMA(III) for 24 h.
View Article and Find Full Text PDFThe skin is an organ that is highly sensitive to chronic arsenic (As) exposure. Skin lesions such as hyperkeratoses (HKs) are common early manifestations of arsenicosis in humans. HKs can be precursor lesions of nonmelanoma skin cancers (NMSCs), but the driving forces behind their formation and how they may ultimately progress to NMSCs are unknown.
View Article and Find Full Text PDFProteomics Clin Appl
December 2007
Toxicoproteomics is the use of proteomic technologies to better understand environmental and genetic factors, toxic mechanisms, and modes of action in response to acute exposure to toxicants and in the long-term development of diseases caused or influenced by these exposures. Use of toxicoproteomic technologies to identify key biochemical pathways, mechanisms, and biomarkers of exposure and toxicity will decrease the uncertainties that are associated with human health risk assessments. This review provides an overview of toxicoproteomics from human health risk assessment perspectives.
View Article and Find Full Text PDFBackground: Potassium bromate (KBrO3), used in both the food and cosmetics industry, and a drinking water disinfection by-product, is a nephrotoxic compound and rodent carcinogen. To gain insight into the carcinogenic mechanism of action and provide possible biomarkers of KBrO3 exposure, the gene expression in kidneys from chronically exposed male F344 rats was investigated.
Methods: Male F344 rats were exposed to KBrO3 in drinking water for 52 and 100 wk.
The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer-risk assessment on humans. We hypothesized that arsenicals are capable of overriding the growth arrest caused by UV treatment and may lead to selective proliferation.
View Article and Find Full Text PDFL929 murine fibroblast cells were exposed to radiofrequency (RF) radiation from a time division multiple access wireless phone operating at 835 MHz frequency to determine the effect of RF-radiation energy emitted by wireless phones on ornithine decarboxylase (ODC) activity in cultured cells. Exposure was for 8 h to an average specific absorption rate (SAR) from <1 W/kg up to 15 W/kg. After exposure, cells were harvested and ODC activity was measured.
View Article and Find Full Text PDF