Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors suppress tumor cell growth via a broad spectrum of mechanisms, which should prove advantageous in the context of cancer prevention. Here, we examined the effect of dietary administration of OSU-HDAC42, a novel HDAC inhibitor, on prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Based on a series of pilot studies, an AIN-76A diet was formulated containing 208 ppm OSU-HDAC42, which was estimated to deliver approximately 25 mg/kg of drug per day to each mouse and found to cause a suppression of PC-3 xenograft tumor growth equivalent to that achieved by gavage administration of a similar dose.
View Article and Find Full Text PDFThe mechanisms whereby cyclooxygenase-2 (COX-2) overexpression may contribute to bladder carcinogenesis remain unknown. We recently developed a transgenic mouse model overexpressing COX-2 under the control of a bovine keratin 5 (BK5) promoter causing a high incidence of transitional cell hyperplasia (TCH) in the bladder with a proportion of lesions progressing to invasive carcinoma. Microarray gene analysis was employed to determine the effects of COX-2 overexpression on gene expression profiles in the urinary bladder.
View Article and Find Full Text PDFOver-expression of cyclooxygenase-2 (COX-2) and prostaglandin E(2) has been demonstrated to play a significant role in the tumorigenesis of colon, lung, breast, bladder and skin. However, inconsistent and controversial reports on the expression and activity of COX-2 in prostate cancer raised the question of whether COX-2 plays a pivotal role in prostate carcinogenesis. To address this question, we examined the effects of COX-2 inhibition on prostate tumorigenesis in the transgenic adenocarcinoma mouse prostate (TRAMP) model.
View Article and Find Full Text PDFThe phosphoinositide-dependent kinase 1 (PDK1)/Akt pathway is an important regulator of multiple biological processes including cell growth, survival, and glucose metabolism. In light of the mechanistic link between Akt signaling and prostate tumorigenesis, we evaluated the chemopreventive relevance of inhibiting this pathway in the transgenic adenocarcinoma of the model prostate (TRAMP) mouse with OSU03012, a celecoxib-derived, but COX-2-inactive, PDK1 inhibitor. Beginning at ten weeks of age when prostatic intraepithelial neoplasia (PIN) lesions are well developed, TRAMP mice received OSU03012 via daily oral gavage for 8 weeks.
View Article and Find Full Text PDFProstaglandin E2 (PGE2) has been shown to induce expression of vascular endothelial growth factor (VEGF) and other signaling molecules in several cancers. PGE2 elicits its functions though four G-protein coupled membrane receptors (EP1-4). In this study, we investigated the role of EP receptors in PGE2-induced molecular events in prostate cancer cells.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
December 2006
Cyclooxygenase and lipoxygenase arachidonate products, including prostaglandins (PGs), leukotrienes (LTs), and hydroxyeicosatetraenoic acids (HETEs), are known to modulate inflammation within tissues and can serve as important etiologic factors in carcinogenesis. Eicosanoid content in tissues is typically determined either as a single molecular species through antibody-based assays or by high-performance liquid chromatography after addition of an exogenous substrate such as arachidonic acid. Unfortunately, the methods currently in use are either time-consuming or complicated.
View Article and Find Full Text PDFExpression of the WWOX gene, encompassing the common chromosome fragile site FRA16D, is altered in a large fraction of cancers of various types, including prostate cancer. We have examined expression and biological functions of WWOX in prostate cancer. WWOX mRNA and protein expression were significantly reduced in prostate cancer-derived cells (LNCaP, DU145, and PC-3) compared with noncancer prostate cells (PWR-1E), and WWOX expression was reduced in 84% of prostate cancers, as assessed by immunohistochemical staining.
View Article and Find Full Text PDFThe ability to modify the expression of specific genes in the mouse through genetic engineering technologies allows for the generation of previously unavailable models for prostate cancer prevention research. Although animal models have existed for some time for the study of prostate cancer prevention (primarily in the rat), it is uncertain if the mechanisms that drive prostate carcinogenesis in these models are relevant to those in human prostate cancer. Cell culture studies are of limited usefulness because the conditions are inherently artificial.
View Article and Find Full Text PDFThe inducible form of cyclooxygenase (COX), COX-2, is up-regulated in many epithelial cancers and its prostaglandin products increase proliferation, enhance angiogenesis, and inhibit apoptosis in several tissues. Pharmacologic inhibition and genetic deletion studies showed a marked reduction of tumor development in colon and skin. COX-2 has also been strongly implicated in urinary bladder cancer primarily by studies with nonselective COX- and COX-2-selective inhibitors.
View Article and Find Full Text PDFBackground: Prostate cancer (PCa) is the leading cancer related death in America. Gleason grading is currently the predominant method for prediction, with only few biomarkers available. More biomarkers, especially as they relate to cancer progression are desirable.
View Article and Find Full Text PDFUltraviolet (UV) irradiation is the primary environmental insult responsible for the development of most common skin cancers. To better understand the multiple molecular events that contribute to the development of UV-induced skin cancer, in a first study, serial analysis of gene expression (SAGE) was used to compare the global gene expression profiles of normal SKH-1 mice epidermis with that of UV-induced squamous cell carcinomas (SCCs) from SKH-1 mice. More than 200 genes were found to be differentially expressed in SCCs compared to normal skin (P < 0.
View Article and Find Full Text PDFWe investigated the formation and pharmacology of prostaglandin E(3) (PGE(3)) derived from fish oil eicosapentaenoic acid (EPA) in human lung cancer A549 cells. Exposure of A549 cells to EPA resulted in the rapid formation and export of PGE(3.) The extracellular ratio of PGE(3) to PGE(2) increased from 0.
View Article and Find Full Text PDF15-Lipoxygenase 2 (15-LOX2), the most abundant arachidonate (AA)-metabolizing enzyme expressed in adult human prostate, is a negative cell-cycle regulator in normal human prostate epithelial cells. Here we study the subcellular distribution of 15-LOX2 and report its tumor-suppressive functions. Immunocytochemistry and biochemical fractionation reveal that 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus.
View Article and Find Full Text PDF15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. The biological function of 15-LOX2 and the role of loss of 15-LOX2 expression in prostate tumorigenesis, however, remain unknown.
View Article and Find Full Text PDFTea polyphenols have been proposed as potential chemopreventive agents against prostate cancer, primarily because of their high intake by populations with reduced cancer incidence and their reported ability to inhibit proliferation and increase apoptosis in prostate cancer cells in culture. Insulin-like growth factor-I (IGF-I) has been implicated as a risk factor for the development of prostate cancer by epidemiological studies and has been shown to be causative in animal models. One of the primary signal transduction pathways activated by IGF-I binding to its receptor is the Akt pathway.
View Article and Find Full Text PDF