Background: Heart failure with preserved ejection fraction (HFpEF) currently accounts for more than half of patients with HF, with limited approved evidence-based therapies. HFpEF is a complex multifactorial disease associated with hypertension, obesity, diabetes, and renal dysfunction. In addition to our limited understanding of HFpEF pathophysiology, the development of new therapies is partially hindered by the existing translationally relevant preclinical HFpEF models.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and the incidence of new-onset AF has been increasing over the past two decades. Several factors contribute to the risk of developing AF including age, preexisting cardiovascular disease, chronic kidney disease, and obesity. Concurrent with the rise in AF, obesity has followed the same two-decade trend.
View Article and Find Full Text PDFBranched chain amino acid (BCAA) catabolic impairments have been implicated in several diseases. Branched chain ketoacid dehydrogenase (BCKDH) controls the rate limiting step in BCAA degradation, the activity of which is inhibited by BCKDH kinase (BDK)-mediated phosphorylation. Screening efforts to discover BDK inhibitors led to identification of thiophene PF-07208254, which improved cardiometabolic endpoints in mice.
View Article and Find Full Text PDFParallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) is a cellular sensor of energetics and when activated in skeletal muscle during contraction can impart changes in skeletal muscle metabolism. Therapeutics that selectively activate AMPK have been developed to lower glucose levels through increased glucose disposal rates as an approach to abrogate the hyperglycemic state of diabetes; however, the metabolic fate of glucose following AMPK activation remains unclear. We have used a combination of evaluation of glucose homeostasis and skeletal muscle incubation to systematically evaluate metabolism following pharmacological activation of AMPK with PF-739, comparing this with AMPK activation through sustained intermittent electrical stimulation of contraction.
View Article and Find Full Text PDFObjective: Branched chain amino acid (BCAA) catabolic defects are implicated to be causal determinates of multiple diseases. This work aimed to better understand how enhancing BCAA catabolism affected metabolic homeostasis as well as the mechanisms underlying these improvements.
Methods: The rate limiting step of BCAA catabolism is the irreversible decarboxylation by the branched chain ketoacid dehydrogenase (BCKDH) enzyme complex, which is post-translationally controlled through phosphorylation by BCKDH kinase (BDK).
In the version of this article initially published, the "[13C2]α-ketoglutarate" label on Fig. 1g is incorrect. It should be "[13C5]α-ketoglutarate".
View Article and Find Full Text PDFDysregulation of hepatic lipid and cholesterol metabolism is a significant contributor to cardiometabolic health, resulting in excessive liver lipid accumulation and ultimately non-alcoholic steatohepatitis (NASH). Therapeutic activators of the AMP-Activated Protein Kinase (AMPK) have been proposed as a treatment for metabolic diseases; we show that the AMPK β1-biased activator PF-06409577 is capable of lowering hepatic and systemic lipid and cholesterol levels in both rodent and monkey preclinical models. PF-06409577 is able to inhibit de novo lipid and cholesterol synthesis pathways, and causes a reduction in hepatic lipids and mRNA expression of markers of hepatic fibrosis.
View Article and Find Full Text PDFGlucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids. In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition.
View Article and Find Full Text PDFOptimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle.
View Article and Find Full Text PDFDiabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the 1 subunit.
View Article and Find Full Text PDFType 2 diabetes mellitus is the result of impaired systemic control of glucose homeostasis, in part through the dysregulation of the hormone glucagon. Glucagon acts on the liver to increase glucose production through alterations in hepatic metabolism, and reducing the elevated glucagon signalling in diabetic patients is an attractive strategy for the treatment of hyperglycaemia. Here we review the actions of the hormone in the liver, focusing on the acute alterations of metabolic pathways.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive.
View Article and Find Full Text PDFGlucose production by the liver is essential for providing a substrate for the brain during fasting. The inability of insulin to suppress hepatic glucose output is a major aetiological factor in the hyperglycaemia of type-2 diabetes mellitus and other diseases of insulin resistance. For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes.
View Article and Find Full Text PDFFatty liver disease is associated with obesity and type 2 diabetes, and hepatic lipid accumulation may contribute to insulin resistance. Histone deacetylase 3 (Hdac3) controls the circadian rhythm of hepatic lipogenesis. Here we show that, despite severe hepatosteatosis, mice with liver-specific depletion of Hdac3 have higher insulin sensitivity without any changes in insulin signaling or body weight compared to wild-type mice.
View Article and Find Full Text PDFThe adipocyte-derived hormone adiponectin signals from the fat storage depot to regulate metabolism in peripheral tissues. Inversely correlated with body fat levels, adiponectin reduction in obese individuals may play a causal role in the symptoms of metabolic syndrome. Adiponectin lowers serum glucose through suppression of hepatic glucose production, an effect attributed to activation of AMPK.
View Article and Find Full Text PDFThe adipocyte-derived secretory factor adiponectin promotes insulin sensitivity, decreases inflammation and promotes cell survival. No unifying mechanism has yet explained how adiponectin can exert such a variety of beneficial systemic effects. Here, we show that adiponectin potently stimulates a ceramidase activity associated with its two receptors, AdipoR1 and AdipoR2, and enhances ceramide catabolism and formation of its antiapoptotic metabolite--sphingosine-1-phosphate (S1P)--independently of AMP-dependent kinase (AMPK).
View Article and Find Full Text PDFMechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood.
View Article and Find Full Text PDFMetformin has become a mainstay in the modest therapeutic armamentarium for the treatment of the insulin resistance of type 2 diabetes mellitus. Although metformin functions primarily by reducing hepatic glucose output, the molecular mechanism mediating this effect had remained elusive until recently. Metformin impairs ATP production, activating the conserved sensor of nutritional stress AMP-activated protein kinase (AMPK), thus providing a plausible and generally accepted model for suppression of gluconeogenic gene expression and glucose output.
View Article and Find Full Text PDFThe peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB.
View Article and Find Full Text PDFIn an effort to extend the peptide aptamer approach, we have developed a scaffold protein that allows small molecule ligand control over the presentation of a peptide aptamer. This scaffold, a fusion of three protein domains, FKBP12, FRB, and GST, presents a peptide linker region for target protein binding only in the absence of the small molecule Rapamycin or other non-immunosuppressive Rapamycin derivatives. Here we describe the characterization of ligand-regulated peptide aptamers that interact with and inhibit the 5'-AMP-activated protein kinase (AMPK).
View Article and Find Full Text PDFWe engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein.
View Article and Find Full Text PDF