The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time.
View Article and Find Full Text PDFNucleic acid (NA) extraction is an essential step in molecular testing for a wide range of applications. Conventional extraction protocols usually suffer from time consuming removal of non-nucleic acid impurities. In this study, a new magnetic nanoparticle (MNP) is presented to simplify the NA extraction.
View Article and Find Full Text PDFBackground: High efficiency in terms of reaction yield and purity has led to the extensive utilization of copper-catalyzed azide-alkyne cycloaddition (CuAAC) in various fields of chemistry. Its compatibility with low molecular weight alcohols promotes the application in surfactant synthesis to tackle the miscibility constraints of the reactants.
Objective: For the tuning of surfactant properties, double click coupling of the antipode precursors was attempted.
A new synthesis approach towards biantennary lipids of Guerbet glycoside type was developed based on oleic acid as sustainable resource. Functionalization of the double bond provided access to primary alcohols with α-branched C-skeleton. Formulation studies with corresponding lactosides indicated formation of vesicles with high assembly stability.
View Article and Find Full Text PDFThe title compound, [Sn(CH)(CHNOS)], has the Sn atom bound by two methyl groups which lie over the weaker Sn-S bonds formed by two asymmetrically chelating di-thio-carbamate ligands so that the coordination geometry is skew-trapezoidal bipyramidal. The most prominent feature of the mol-ecular packing are secondary Sn⋯S inter-actions [Sn⋯S = 3.5654 (7) Å] that lead to centrosymmetric dimers.
View Article and Find Full Text PDFThe Sn atom in the title diorganotin compound, [Sn(CHF)Cl(CHOS)], is located on a centre of inversion, resulting in the CClO donor set having an all- disposition of like atoms. The coordination geometry approximates an octa-hedron. The crystal features C-H⋯F, C-H⋯Cl and C-H⋯π inter-actions, giving rise to a three-dimensional network.
View Article and Find Full Text PDFThe title diorganotin compound, [Sn(CH)(CHNO)], features a distorted SnCNO coordination geometry almost inter-mediate between ideal trigonal-bipyramidal and square-pyramidal. The dianionic Schiff base ligand coordinates in a tridentate fashion two alkoxide O and hydrazinyl N atoms; an intra-molecular hy-droxy-O-H⋯N(hydrazin-yl) hydrogen bond is noted. The alk-oxy chain has an all- conformation, and to the first approximation, the mol-ecule has local mirror symmetry relating the two Sn-bound methyl groups.
View Article and Find Full Text PDFA series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably.
View Article and Find Full Text PDFA series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
April 2011
The galactose ring in the title compound, C(21)H(24)O(11), has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing features C-H⋯O inter-actions that lead to the formation of supra-molecular layers in the ab plane.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
April 2011
The pyran-oside ring in the title compound, C(21)H(24)O(11), has a chair conformation with the substituted benzene ring occupying an equatorial position. The crystal packing is dominated by C-H⋯O inter-actions that lead to the formation of supra-molecular layers in the ab plane.
View Article and Find Full Text PDF