Publications by authors named "Ruslinda A"

The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a major threat to global health, estimated to be the cause 30 % (17.3 million in 2008) of deaths every year, and the number of deaths caused by CVD is expected to increase further, reaching 23.3 million by 2030.

View Article and Find Full Text PDF

A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting.

View Article and Find Full Text PDF

Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules.

View Article and Find Full Text PDF

In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization.

View Article and Find Full Text PDF

Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications.

View Article and Find Full Text PDF

The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) has infected almost 35 million people worldwide. Various tests have been developed to detect the presence of HIV during the early stages of the disease in order to reduce the risk of transmission to other humans. The HIV-1 Tat protein is one of the proteins present in HIV that are released abundantly approximately 2-4 weeks after infection.

View Article and Find Full Text PDF

Creating novel nanostructures is a primary step for high-performance analytical sensing. Herein, a new worm like nanostructure with Zinc Oxide-gold (ZnO/Au) hybrid was fabricated through an aqueous hydrothermal method, by doping Au-nanoparticle (AuNP) on the growing ZnO lattice. During ZnO growth, fine tuning the solution temperature expedites random curving of ZnO nanorods and forms nano-worms.

View Article and Find Full Text PDF

Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG).

View Article and Find Full Text PDF

Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed.

View Article and Find Full Text PDF

Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. Data from World Health Organization (WHO) accounted 30% of global death annually and expected more than 23 million die annually by 2030. This fatal effects trigger the need of appropriate biomarkers for early diagnosis, thus countermeasure can be taken.

View Article and Find Full Text PDF

The potential of aptamers as ligand binding molecule has opened new avenues in the development of biosensors for cancer oncoproteins. In this paper, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor (PDGF-BB) oncoprotein detection is reported. The detection mechanism is based on the release of fluorophore (TOTO intercalating dye) from the target binding aptamer's stem structure when it captures PDGF.

View Article and Find Full Text PDF

An aptasensor was designed on a nanocrystalline diamond (NCD) surface that combined with biological recognition elements, PDGF-binding aptamers, which inherently possess high affinity to PDGF-BB proteins. Functional components such as carboxylic acids (-COOH) and amines (-NH2) were directly introduced onto the NCD surface and used as probing units for immobilization of PDGF-binding aptamers. The surface coverage of different components on the NCD was analyzed by X-ray photoelectron spectroscopy (XPS) measurements, and the effects of various functionalizations on the NCD biosensor performance were investigated via fluorescence observations.

View Article and Find Full Text PDF

Aptamer-based fluorescence detection of platelet-derived growth factor (PDGF) on a functionalized diamond surface was demonstrated. In this work, a sandwich design based on the ability of PDGF to bind with aptamers at its two available binding sites was employed. It was found that this sandwich design approach significantly increases the fluorescence signal intensity, and thereby a very low detection limit of 4 pM was achieved.

View Article and Find Full Text PDF

A solution gate field effect transistor (SGFET) using an oxidised boron δ-doped channel on (111) diamond is presented for the first time. Employing an optimised plasma chemical vapour deposition (PECVD) recipe to deposit δ-layers, SGFETs show improved current-voltage (I-V) characteristics in comparison to previous similar devices fabricated on (100) and polycrystalline diamond, where the device is shown to operate in the enhancement mode of operation, achieving channel pinch-off and drain-source current saturation within the electrochemical window of diamond. A maximum gain and transconductance of 3 and 200μS/mm are extracted, showing comparable figures of merit to hydrogen-based SGFET.

View Article and Find Full Text PDF

The detection of platelet-derived growth factor (PDGF) via a solution-gate field-effect transistor (SGFET) has been demonstrated for the first time using aptamers immobilized on a diamond surface. Upon introduction of PDGF to the immobilized aptamer, a shift of 31.7 mV in the negative direction is observed at a source-drain current of -50 μA.

View Article and Find Full Text PDF