Background: The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis.
Methods: Sepsis was induced by i.
Patients with Hirschsprung disease lack enteric ganglia in the distal colon and propulsion of colorectal content is substantially impaired. Proposed stem cell therapies to replace neurons require surgical bypass of the aganglionic bowel during re-colonization, but there is inadequate knowledge of the consequences of bypass. We performed bypass surgery in Ednrb-/- Hirschsprung rat pups.
View Article and Find Full Text PDFThe gastrointestinal hormone, insulin-like peptide 5 (INSL5), is found in large intestinal enteroendocrine cells (EEC). One of its functions is to stimulate nerve circuits that increase propulsive activity of the colon through its receptor, the relaxin family peptide 4 receptor (RXFP4). To investigate the mechanisms that link INSL5 to stimulation of propulsion, we have determined the localisation of cells expressing Rxfp4 in the mouse colon, using a reporter mouse to locate cells expressing the gene.
View Article and Find Full Text PDFHirschsprung disease occurs when children are born with no intrinsic nerve cells in varying lengths of the large intestine. In the most severe cases, neurons are also missing from the distal part of the small intestine. Nerve-mediated relaxation of the aganglionic bowel fails and fecal matter accumulates in the more proximal regions of the intestine.
View Article and Find Full Text PDFInsulin-like peptide 5 (INSL5), the natural ligand for the relaxin family peptide receptor 4 (RXFP4), is a gut hormone that is exclusively produced by colonic L-cells. We have recently developed an analogue of INSL5, INSL5-A13, that acts as an RXFP4 agonist and stimulates colorectal propulsion in wild-type mice but not in RXFP4-knockout mice. These results suggest that INSL5 may have a physiological role in the control of colorectal motility.
View Article and Find Full Text PDFBackground: Dopamine receptor 2 (DRD2) and ghrelin receptor (GHSR1a) agonists both stimulate defecation by actions at the lumbosacral defecation center. Dopamine is in nerve terminals surrounding autonomic neurons of the defecation center, whereas ghrelin is not present in the spinal cord. Dopamine at D2 receptors generally inhibits neurons, but at the defecation center, its effect is excitatory.
View Article and Find Full Text PDFBackground: Gastrointestinal (GI) dysfunction, including constipation, is a common non-motor symptom of Parkinson's disease (PD). The toxin 6-hydroxydopamine (6OHDA) produces the symptoms of PD, surprisingly including constipation, after it is injected into the medial forebrain bundle (MFB). However, the mechanisms involved in PD-associated constipation caused by central application of 6OHDA remain unknown.
View Article and Find Full Text PDFBackground: Muscarinic receptor 1 positive allosteric modulators (M1PAMs) enhance colonic propulsive contractions and defecation through the facilitation of M1 receptor (M1R)-mediated signaling. We examined M1R expression in the colons of 5 species and compared colonic propulsion and defecation caused by the M1PAM, T440, the 5-HT agonist, prucalopride, and the cholinesterase inhibitor, neostigmine, in rats and dogs.
Methods: M1R expression was profiled by immunostaining and in situ hybridization.
Background: Because M1 muscarinic receptors are expressed by enteric neurons, we investigated whether positive allosteric modulators of these receptors (M1PAMs) would enhance colorectal propulsion and defecation in dogs, mice, and rats.
Methods: The potencies of the M1PAMs, T662 or T523, were investigated using M1 receptor-expressing CHO cells. Effectiveness of M1PAMs on defecation was investigated by oral administration in mice and rats, by recording propulsive contractions in anaesthetized rats and by recording high amplitude propagating contractions in dogs.
Study Design: Narrative review.
Objectives: The purpose is to review the organisation of the nerve pathways that control defecation and to relate this knowledge to the deficits in colorectal function after SCI.
Methods: A literature review was conducted to identify salient features of defecation control pathways and the functional consequences of damage to these pathways in SCI.
In laboratory animals and in human, centrally penetrant ghrelin receptor agonists, given systemically or orally, cause defecation. Animal studies show that the effect is due to activation of ghrelin receptors in the spinal lumbosacral defecation centers. However, it is not known whether there is a physiological role of ghrelin or the ghrelin receptor in the control of defecation.
View Article and Find Full Text PDFWhat is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.
View Article and Find Full Text PDFBackground And Purpose: Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown.
Experimental Approach: The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a).