Publications by authors named "Ruslan Nuryyev"

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how the virus SARS-CoV-2 affects lung cells using a special lab-grown lung model to understand the infection better.
  • They found that certain proteins help the lungs fight the virus by producing chemicals that respond to the infection.
  • When a specific protein called surfactant protein B was missing, the lungs couldn't defend themselves well against the virus, but adding it back helped improve their ability to fight the infection.
View Article and Find Full Text PDF

To date, no stem cell therapy has been directed to specific recipients-and, conversely, withheld from others-based on a clinical or molecular profile congruent with that cell's therapeutic mechanism-of-action (MOA) for that condition. We address this challenge preclinically with a prototypical scenario: human neural stem cells (hNSCs) against perinatal/neonatal cerebral hypoxic-ischemic injury (HII). We demonstrate that a clinically translatable magnetic resonance imaging (MRI) algorithm, hierarchical region splitting, provides a rigorous, expeditious, prospective, noninvasive "biomarker" for identifying subjects with lesions bearing a molecular profile indicative of responsiveness to hNSCs' neuroprotective MOA.

View Article and Find Full Text PDF

The use of regenerative medicine to treat nervous system disorders like ataxia has been proposed to either replace or support degenerating neurons. In this study, we assessed the ability of human neural progenitor cells (hNPCs) to repair and restore the function of dying neurons within the spastic Han-Wistar rat (sHW), a model of ataxia. The sHW rat suffers from neurodegeneration of specific neurons, including cerebellar Purkinje cells and hippocampal CA3 pyramidal cells leading to the observed symptoms of forelimb tremor, hind-leg rigidity, gait abnormality, motor incoordination, and a shortened life span.

View Article and Find Full Text PDF

An emerging avenue for recalcitrant neurodegenerative disease treatment is neural progenitor cell (NPC) transplantation. In this study, we investigated the effectiveness of two different delivery routes of human-derived NPC inoculation: injection into the common carotid artery or unilateral stereotactic implantation into the degenerating cerebellum and hippocampus of spastic Han-Wistar (sHW) rats, a model of ataxia. At 30 days of age, sHW mutants were implanted with osmotic pumps preloaded with cyclosporine.

View Article and Find Full Text PDF