Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult.
View Article and Find Full Text PDFSkeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters.
View Article and Find Full Text PDFCreating a complete picture of the regulation of transcription seems to be an urgent task of modern biology. Regulation of transcription is a complex process carried out by transcription factors (TFs) and auxiliary proteins. Over the past decade, ChIP-Seq has become the most common experimental technology studying genome-wide interactions between TFs and DNA.
View Article and Find Full Text PDFObjectives: Mammalian genomics studies, especially those focusing on transcriptional regulation, require information on genomic locations of regulatory regions, particularly, transcription factor (TF) binding sites. There are plenty of published ChIP-Seq data on in vivo binding of transcription factors in different cell types and conditions. However, handling of thousands of separate data sets is often impractical and it is desirable to have a single global map of genomic regions potentially bound by a particular TF in any of studied cell types and conditions.
View Article and Find Full Text PDFRNA plays an important role in the intracellular cell life and in the organism in general. Besides the well-established protein coding RNAs (messenger RNAs, mRNAs), long non-coding RNAs (lncRNAs) have gained the attention of recent researchers. Although lncRNAs have been classified as non-coding, some authors reported the presence of corresponding sequences in ribosome profiling data (Ribo-seq).
View Article and Find Full Text PDFWe present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database.
View Article and Find Full Text PDFRibosome profiling technology (Ribo-Seq) allowed to highlight more details of mRNA translation in cell and get additional information on importance of mRNA sequence features for this process. Application of translation inhibitors like harringtonine and cycloheximide along with mRNA-Seq technique helped to assess such important characteristic as translation efficiency. We assessed the translational importance of features of mRNA sequences with the help of statistical analysis of Ribo-Seq and mRNA-Seq data.
View Article and Find Full Text PDFAlbeit the great number of microarray data available on breast cancer, reliable identification of genes associated with breast cancer development remains a challenge. The aim of this work was to develop a novel method of meta-analysis for the identification of differentially expressed genes integrating results of several independent microarray experiments. We developed a statistical method for identification of up- and down-regulated genes to perform meta-analysis.
View Article and Find Full Text PDF