We studied the micellar and solubilizing properties of aqueous solutions of unfractionated rhamnolipids produced by Pseudomonas aeruginosa. We used nuclear magnetic resonance (NMR) diffusometry, dynamic light scattering, and conductometry to measure the critical micelle concentration (CMC) of rhamnolipid solutions and determined the effective hydrodynamic radii of rhamnolipid monomers and micelles. Based on selective measurements of the self-diffusion coefficients of molecules, performed by NMR diffusometry, the solubilizing properties of rhamnolipids were studied depending on their concentration in solution; aromatic hydrocarbons, benzene, toluene, ethylbenzene, and para-xylene were taken as solubilizates.
View Article and Find Full Text PDFWe examined a series of amino acid-based surfactants with two carboxylic groups separated by a spacer of one, two, or three carbon atoms with sodium and calcium counterions in the premicellar concentration region near the CMC. H nuclear magnetic resonance (NMR) spectroscopy and NMR diffusometry techniques were used to study the local environment, association, and translational dynamics of the surfactant's molecules. We measured the self-diffusion coefficients of the micelles, calculated the effective hydrodynamic radii, and determined the temperature region in which the premicelles exist.
View Article and Find Full Text PDFSelf-diffusion coefficients of sodium dodecyl sulfate (SDS) were measured in aqueous solutions in the premicellar range of the SDS concentrations 7-34.7 mM and temperatures 30-90°C. Average effective hydrodynamic radii and aggregation numbers of SDS in the premicellar region were determined.
View Article and Find Full Text PDFWe have measured the self-diffusion coefficients and calculated the effective hydrodynamic radii of micelles of ethoxylated isononylphenols in aqueous solutions in the presence of sodium chloride, as well as in their binary mutual mixtures, when approaching cloudy conditions. These cloudy conditions were created by an increase in temperature, a change in the concentration of an electrolyte in the solution, or a mutual ratio of neonols in their binary mixtures. The results are discussed within the concept of the hydrophilic-lipophilic balance.
View Article and Find Full Text PDF