Publications by authors named "Ruslan Alvarez Diduk"

In this work, a nanostructured conductive film possessing nanozyme features was straightforwardly produced via laser-assembling and integrated into complete nitrocellulose sensors; the cellulosic substrate allows to host live cells, while the nanostructured film nanozyme activity ensures the enzyme-free real-time detection of hydrogen peroxide (HO) released by the sames. In detail, a highly exfoliated reduced graphene oxide 3D film decorated with naked platinum nanocubes was produced using a CO-laser plotter via the simultaneous reduction and patterning of graphene oxide and platinum cations; the nanostructured film was integrated into a nitrocellulose substrate and the complete sensor was manufactured using an affordable semi-automatic printing approach. The linear range for the direct HO determination was 0.

View Article and Find Full Text PDF

Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate.

View Article and Find Full Text PDF

Research in electrochemical detection in lateral flow assays (LFAs) has gained significant momentum in recent years. The primary impetus for this surge in interest is the pursuit of achieving lower limits of detection, especially given that LFAs are the most widely employed point-of-care biosensors. Conventionally, the strategy for merging electrochemistry and LFAs has centered on the superposition of screen-printed electrodes onto nitrocellulose substrates during LFA fabrication.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA).

View Article and Find Full Text PDF

Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices.

View Article and Find Full Text PDF

The production of 2D/2D heterostructures (HTs) with favorable electrochemical features is challenging, particularly for semiconductor transition metal dichalcogenides (TMDs). In this studies, we introduce a CO laser plotter-based technology for the realization of HT films comprising reduced graphene oxide (rGO) and 2D-TMDs (MoS, WS, MoSe, and WSe) produced water phase exfoliation. The strategy relies on the Laser-Induced production of HeterosTructures (LIHTs), where after irradiation the nanomaterials exhibit changes in the morphological and chemical structure, becoming conductive easily transferable nanostructured films.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene-based materials are valuable in electrochemical biosensing because they have high surface areas, unique electrochemical characteristics, and are biocompatible, yet producing graphene electrodes efficiently remains a challenge due to existing methods being slow and costly.
  • A new fast and low-cost technique for creating reduced graphene oxide electrodes was developed, combining laser scribing and inkjet printing with a stamping method to pattern and reduce graphene oxide on polyester sheets.
  • The resulting biosensors demonstrated impressive performance with a low limit of detection and a wide dynamic range, successfully tested in artificial urine and integrated into a portable smartphone-based system, suggesting potential for real-world applications in detecting various pathogenic bacteria.
View Article and Find Full Text PDF

The combination of two-dimensional materials and metal nanoparticles (MNPs) allows the fabrication of novel nanocomposites with unique physical/chemical properties exploitable in high-performance smart devices and biosensing strategies. Current methods to obtain graphene-based films decorated with noble MNPs are cumbersome, poorly reproducible, and difficult to scale up. Herein, we propose a straightforward, versatile, surfactant-free, and single-step technique to produce reduced graphene oxide (rGO) conductive films integrating "naked" noble MNPs.

View Article and Find Full Text PDF

Lateral flow assays (LFAs) are currently the most used point-of-care sensors for both diagnostic (e.g., pregnancy test, COVID-19 monitoring) and environmental (e.

View Article and Find Full Text PDF

This manuscript aims at raising the attention of the scientific community to the need for better characterised bioreceptors for fast development of point-of-care diagnostic devices able to support mass frequency testing. Particularly, we present the difficulties encountered in finding suitable antibodies for the development of a lateral flow assay for detecting the nucleoprotein of SARS-CoV-2.

View Article and Find Full Text PDF

Adenosine-5'-triphosphate (ATP) is the primary energy carrier in all living organisms, and its detection in living cells represents a well-established approach. ATP-driven bioluminescence (BL) relying on the D-luciferin-luciferase reaction is a bioanalytical tool widely employed for monitoring hygiene and microbial contamination of foods.Here, we report a straightforward method for ATP BL detection using an ATP sensing paper fabricated with an alternative freeze-dry procedure.

View Article and Find Full Text PDF

Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g , respectively.

View Article and Find Full Text PDF

The quantitative detection of different molecular targets is of utmost importance for a variety of human activities, ranging from healthcare to environmental studies. Bioanalytical methods have been developed to solve this and to achieve the quantification of multiple targets from small volume samples. Generally, they can be divided into two different classes: point of care (PoC) and laboratory-based approaches.

View Article and Find Full Text PDF

Determination of the levels of heavy metal ions would support assessment of sources and pathways of water pollution. However, traditional spatial assessment by manual sampling and off-site detection in the laboratory is expensive and time-consuming and requires trained personnel. Aiming to fill the gap between on-site automatic approaches and laboratory techniques, we developed an autonomous sensing boat for on-site heavy metal detection using square-wave anodic stripping voltammetry.

View Article and Find Full Text PDF

The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays.

View Article and Find Full Text PDF

Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume.

View Article and Find Full Text PDF

The availability of sensors able to rapidly detect SARS-CoV-2 directly in biological fluids in a single step would allow performing massive diagnostic testing to track in real time and contain the spread of COVID-19. Motivated by this, here, we developed an electrochemical aptamer-based (EAB) sensor able to achieve the rapid, reagentless, and quantitative measurement of the SARS-CoV-2 spike (S) protein. First, we demonstrated the ability of the selected aptamer to undergo a binding-induced conformational change in the presence of its target using fluorescence spectroscopy.

View Article and Find Full Text PDF

Water is the most important ingredient of life. Water fecal pollution threatens water quality worldwide and has direct detrimental effects on human health and the global economy. Nowadays, assessment of water fecal pollution relies on time-consuming techniques that often require well-trained personnel and highly-equipped laboratories.

View Article and Find Full Text PDF

Point-of-care (PoC) tests are practical and effective diagnostic solutions for major clinical problems, ranging from the monitoring of a pandemic to recurrent or simple measurements. Although, in recent years, a great improvement in the analytical performance of such sensors has been observed, there is still a major issue that has not been properly solved: the ability to perform adequate sample treatments. The main reason is that normally sample treatments require complicated or long procedures not adequate for deployment at the PoC.

View Article and Find Full Text PDF

Recently, many bioluminescence-based applications have arisen in several fields, such as biosensing, bioimaging, molecular biology, and human health diagnosis. Among all bioluminescent organisms, Aliivibrio fischeri (A. fischeri) is a bioluminescent bacterium used to carry out water toxicity assays since the late 1970s.

View Article and Find Full Text PDF

Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest.

View Article and Find Full Text PDF

The ease of use, low cost and quick operation of lateral flow assays (LFA) have made them some of the most common point of care biosensors in a variety of fields. However, their generally low sensitivity has limited their use for more challenging applications, where the detection of low analytic concentrations is required. Here we propose the use of soluble wax barriers to selectively and temporarily accumulate the target and label nanoparticles on top of the test line (TL).

View Article and Find Full Text PDF

Significant levels of infectious diseases caused by pathogenic bacteria are nowadays a worldwide matter, carrying considerable public health care challenges and huge economic concerns. Because of the rapid transmission of these biothreat agents and the outbreak of diseases, a rapid detection of pathogens in early stages is crucial, particularly in low-resources settings. To this aim, we developed for the first time a new sensing approach carried out in a single step for O157:H7 detection.

View Article and Find Full Text PDF

Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy.

View Article and Find Full Text PDF