Some restriction-modification systems contain two DNA methyltransferases. In the present work, we have classified such systems according to the families of catalytic domains present in the restriction endonucleases and both DNA methyltransferases. Evolution of the restriction-modification systems containing an endonuclease with a NOV_C family domain and two DNA methyltransferases, both with DNA_methylase family domains, was investigated in detail.
View Article and Find Full Text PDFNew spin-dependent photoemission properties of alkali antimonide semiconductor cathodes are predicted based on the detected optical spin orientation effect and DFT band structure calculations. Using these results, the Na_{2}KSb/Cs_{3}Sb heterostructure is designed as a spin-polarized electron source in combination with the Al_{0.11}Ga_{0.
View Article and Find Full Text PDFThe f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCoP. In its bulk, Ce is passive and behaves tetravalently.
View Article and Find Full Text PDFUsing density functional theory, we propose the (MnSbTe)·(SbTe) family of stoichiometric van der Waals compounds that harbor multiple topologically nontrivial magnetic phases. In the ground state, the first three members of the family ( = 0, 1, 2) are 3D antiferromagnetic topological insulators, while for ≥ 3 a special phase is formed, in which a nontrivial topological order coexists with a partial magnetic disorder in the system of the decoupled 2D ferromagnets, whose magnetizations point randomly along the third direction. Furthermore, due to a weak interlayer exchange coupling, these materials can be field-driven into the FM Weyl semimetal ( = 0) or FM axion insulator states ( ≥ 1).
View Article and Find Full Text PDFChalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSbTe is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSbTe can be viewed as a 3D analogue of graphene.
View Article and Find Full Text PDFMagnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics, such as the quantum anomalous Hall effect and chiral Majorana fermions. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic and electronic properties of these materials, restricting the observation of important effects to very low temperatures.
View Article and Find Full Text PDFUsing density functional theory and Monte Carlo calculations, we study the thickness dependence of the magnetic and electronic properties of a van der Waals interlayer antiferromagnet in the two-dimensional limit. Considering MnBi_{2}Te_{4} as a model material, we find it to demonstrate a remarkable set of thickness-dependent magnetic and topological transitions. While a single septuple layer block of MnBi_{2}Te_{4} is a topologically trivial ferromagnet, the thicker films made of an odd (even) number of blocks are uncompensated (compensated) interlayer antiferromagnets, which show wide band gap quantum anomalous Hall (zero plateau quantum anomalous Hall) states.
View Article and Find Full Text PDFTemperature-dependent transport properties of the recently discovered layered bismuth-rich tellurobromides BiTeBr (n = 2, 3) are investigated for the first time. Dense homogeneous polycrystalline specimens prepared for different electrical and thermal measurements were synthesized by a ball milling-based process. While the calculated electronic structure classifies BiTeBr as a semimetal with a small electron pocket, its transport properties demonstrate a semiconductorlike behavior.
View Article and Find Full Text PDFBackground: Restriction-modification (R-M) systems protect bacteria and archaea from attacks by bacteriophages and archaeal viruses. An R-M system specifically recognizes short sites in foreign DNA and cleaves it, while such sites in the host DNA are protected by methylation. Prokaryotic viruses have developed a number of strategies to overcome this host defense.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2018
Surface electronic spectra, surface and bulk properties as well as the underlying chemical bonding characteristics in topological insulators with complex bonding patterns are considered for the example of cubic, polar intermetallics KNaBi, KBi and RbBi (with the general formula ABi, A - alkali metal). Chemical bonding in ABi has a delocalized, polar character as elucidated by the Bader charge analysis in bulk and at the surface, by real-space bonding indicators and by the maximally localized-Wannier-function technique. We underpin emergent surface features in the electronic spectra that are driven by chemical bonding.
View Article and Find Full Text PDFBiochemistry (Mosc)
February 2018
Many proteins need recognition of specific DNA sequences for functioning. The number of recognition sites and their distribution along the DNA might be of biological importance. For example, the number of restriction sites is often reduced in prokaryotic and phage genomes to decrease the probability of DNA cleavage by restriction endonucleases.
View Article and Find Full Text PDFA rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.
View Article and Find Full Text PDFOne of the most promising platforms for spintronics and topological quantum computation is the two-dimensional electron gas (2DEG) with strong spin-orbit interaction and out-of-plane ferromagnetism. In proximity to an s-wave superconductor, such 2DEG may be driven into a topologically non-trivial superconducting phase, predicted to support zero-energy Majorana fermion modes. Using angle-resolved photoemission spectroscopy and ab initio calculations, we study the 2DEG at the surface of the vanadium-doped polar semiconductor with a giant Rashba-type splitting, BiTeI.
View Article and Find Full Text PDFThe GeSbTe is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the GeSbTe crystalline phases.
View Article and Find Full Text PDFWe report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa2Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa2Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain.
View Article and Find Full Text PDFPalindromes are frequently underrepresented in prokaryotic genomes. Palindromic 5[Formula: see text]-GATC-3[Formula: see text] site is a recognition site of different Restriction-Modification (R-M) systems, as well as solitary methyltransferase Dam. Classical GATC-specific R-M systems methylate GATC and cleave unmethylated GATC.
View Article and Find Full Text PDFStrong topological insulators (TIs) support topological surfaces states on any crystal surface. In contrast, a weak, time-reversal-symmetry-driven TI with at least one non-zero v1, v2, v3 ℤ2 index should host spin-locked topological surface states on the surfaces that are not parallel to the crystal plane with Miller indices (v1 v2 v3). On the other hand, mirror symmetry can protect an even number of topological states on the surfaces that are perpendicular to a mirror plane.
View Article and Find Full Text PDFBackground: Avoidance of palindromic recognition sites of Type II restriction-modification (R-M) systems was shown for many R-M systems in dozens of prokaryotic genomes. However the phenomenon has not been investigated systematically for all presently available genomes and annotated R-M systems. We have studied all known recognition sites in thousands of prokaryotic genomes and found factors that influence their avoidance.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2015
Restriction-modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense.
View Article and Find Full Text PDF