Publications by authors named "Rushil Mandlik"

The rapid advancement in the field of omics approaches plays a crucial role in the development of improved industrial oil crops. Industrial oil crops are important for many sectors like food processing, biofuels, cosmetics, and pharmaceuticals, making them indispensable contributors to global economies and these crops serve as vital elements in a multitude of industrial processes. Significant improvements in genomics have revolutionized the agricultural sector, particularly in the realm of oil crops.

View Article and Find Full Text PDF

Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function.

View Article and Find Full Text PDF

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential".

View Article and Find Full Text PDF
Article Synopsis
  • Phosphate (P) is essential for plant growth, but its availability in soil can restrict development, making it important to understand how plants adapt to low P conditions.
  • This study utilizes genome-wide association studies (GWAS) on diverse tomato accessions to identify genetic factors associated with traits related to P uptake, measuring parameters like shoot height and root length under normal and low P conditions.
  • The research identified specific single nucleotide polymorphisms (SNPs) linked to key plant traits, offering insights into potential candidate genes that could be used in breeding programs to create P-efficient tomato varieties for sustainable agriculture.
View Article and Find Full Text PDF

Nodulin 26-like intrinsic protein (NIP) subfamily of aquaporins (AQPs) in plants, is known to be involved in the uptake of metalloids including boron, germanium (Ge), arsenic (As), and silicon (Si). In the present study, a thorough evaluation of 55 AQPs found in the mungbean genome, including phylogenetic distribution, sequence homology, expression profiling, and structural characterization, contributed to the identification of VrNIP2-1 as a metalloid transporter. The pore-morphology of VrNIP2-1 was studied using molecular dynamics simulation.

View Article and Find Full Text PDF

The 14-3-3 protein is a kind of evolutionary ubiquitous protein family highly conserved in eukaryotes. Initially, 14-3-3 proteins were reported in mammalian nervous tissues, but in the last decade, their role in various metabolic pathways in plants established the importance of 14-3-3 proteins. In the present study, a total of 22 genes, also called general regulatory factors (), were identified in the peanut () genome, out of which 12 belonged to the ε group, whereas 10 of them belonged to the non- ε-group.

View Article and Find Full Text PDF

cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.

View Article and Find Full Text PDF

Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content.

View Article and Find Full Text PDF

Arsenic contamination in aquatic and terrestrial ecosystem is a serious environmental issue. Both natural and anthropogenic processes can introduce it into the environment. The speciation of the As determine the level of its toxicity.

View Article and Find Full Text PDF

Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, sp.

View Article and Find Full Text PDF

Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs.

View Article and Find Full Text PDF

Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs.

View Article and Find Full Text PDF

Background: The Sugar Will Eventually Be Exported Transporters (SWEET), consisting of the MtN3 and salvia domain, are sugar transporters having an active role in diverse activities in plants such as pollen nutrition, phloem loading, nectar secretion, reproductive tissue development, and plant-pathogen interaction. The SWEET genes have been characterized only in a few fruit crop species.

Methods And Results: In this study, a total of 15 SWEET genes were identified in the pomegranate (Punica granatum) genome.

View Article and Find Full Text PDF

Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability.

View Article and Find Full Text PDF

Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen.

View Article and Find Full Text PDF

Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients.

View Article and Find Full Text PDF

Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress.

View Article and Find Full Text PDF

Metacaspases (MCs), a class of cysteine-dependent proteases found in plants, fungi, and protozoa, are predominately involved in programmed cell death processes. In this study, we identified metacaspase genes in cultivated and wild rice species. Characterization of metacaspase genes identified both in cultivated subspecies of , , and and in nine wild rice species was performed.

View Article and Find Full Text PDF

Aquaporins (AQPs) facilitates the transport of small solutes like water, urea, carbon dioxide, boron, and silicon (Si) and plays a critical role in important physiological processes. In this study, genome-wide characterization of AQPs was performed in bottle gourd. A total of 36 AQPs were identified in the bottle gourd, which were subsequently analyzed to understand the pore-morphology, exon-intron structure, subcellular-localization.

View Article and Find Full Text PDF

Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability.

View Article and Find Full Text PDF

Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells.

View Article and Find Full Text PDF

Silicon, a quasi-essential element for plants, improves vigour and resilience under stress. Recently, studies on textile hemp (Cannabis sativa L.) showed its genetic predisposition to uptake silicic acid and accumulate it as silica in epidermal leaf cells and trichomes.

View Article and Find Full Text PDF