Eradicating leukemia requires a deep understanding of the interaction between leukemic cells and their protective microenvironment. The CXCL12/CXCR4 axis has been postulated as a critical pathway dictating leukemia stem cell (LSC) chemoresistance in AML due to its role in controlling cellular egress from the marrow. Nevertheless, the cellular source of CXCL12 in the acute myeloid leukemia (AML) microenvironment and the mechanism by which CXCL12 exerts its protective role in vivo remain unresolved.
View Article and Find Full Text PDFMetabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage.
View Article and Find Full Text PDFStem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of—and molecular basis for—heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes in vivo.
View Article and Find Full Text PDFStem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo.
View Article and Find Full Text PDFWhile much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching.
View Article and Find Full Text PDFNovel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor.
View Article and Find Full Text PDFThe glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion.
View Article and Find Full Text PDFDistinctive metabolism associated with particular cell states is increasingly being defined in normal and malignant cells. Ito et al. (2012) now show that fatty acid oxidation is associated with hematopoietic stem cells and determines whether they undergo symmetric or asymmetric cell division, driving a fundamental property of the stem cell state.
View Article and Find Full Text PDFAnemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling.
View Article and Find Full Text PDFHaematopoietic stem cells (HSCs) can convert between growth states that have marked differences in bioenergetic needs. Although often quiescent in adults, these cells become proliferative upon physiological demand. Balancing HSC energetics in response to nutrient availability and growth state is poorly understood, yet essential for the dynamism of the haematopoietic system.
View Article and Find Full Text PDFHoming is the phenomenon whereby transplanted hematopoietic cells are able to travel to and engraft or establish residence in the bone marrow. Various chemomkines and receptors are involved in the homing of hematopoietic stem cells. This paper outlines the classic homing protocol used in hematopoietic stem cell studies.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2006
In the search for novel genes involved in the paclitaxel resistance phenotype, prior studies of gene expression in paclitaxel-resistant cell lines and their paired drug-sensitive parental lines using high-density Affymetrix GeneChip arrays identified guanylate-binding protein 1 (GBP1) gene as an overexpressed transcript. The GBP1 gene encodes a large GTPase that is induced by interferon gamma (IFN-gamma) in a variety of eukaryotic cells. In this report we characterize GBP1 and demonstrate that GBP1 expression is consistently upregulated in 7 of 8 paclitaxel or doxorubicin-resistant human cancer cell lines as compared to its expression in the relevant drug-sensitive parental lines.
View Article and Find Full Text PDFCancer Chemother Pharmacol
March 2005
Purpose: To identify genes involved in the paclitaxel resistance phenotype.
Methods: High-density Affymetrix HG-U95Av2 microarrays were used to quantify gene expression in the resulting cell lines, SKOV-3TR, OVCAR8TR and MCF-7TR, and their drug-sensitive parental lines, SKOV-3, OVCAR8 and MCF-7.
Results: Three paclitaxel-resistant human ovarian and breast cancer cell lines were established.
Am J Reprod Immunol
July 2004
Objectives: Cytogenetic evaluation of product of conception (POC) is essential to determine the cause of pregnancy loss and aid the prenatal diagnosis of subsequent pregnancies. The purpose of this study is twofold. (1) To profile cytogenetic abnormalities, their relationship with maternal and gestational age and analyze sex ratios in our case series of 2052 consecutive samples of POC referred to the Baystate Medical Center, Laboratory Genetics between January 1992 and January 1999.
View Article and Find Full Text PDFPrevious studies directed at identifying paclitaxel resistance genes in a paclitaxel-resistant subclone of the human ovarian cancer cell line SKOV-3 identified a novel cancer testis antigen, Taxol resistance-associated gene 3 (TRAG-3). Because investigation suggested that TRAG-3, located on chromosome Xq28, does not directly participate in the paclitaxel-resistant phenotype, it was hypothesized that TRAG-3 might be linked to a neighboring gene that is directly involved in the drug-resistant phenotype, or alternatively, overexpression of TRAG-3 might be attributable to coregulation with other cancer testis antigens. To distinguish between these two hypotheses, expression of the genes that flank TRAG-3 was evaluated, namely the Centrin 2 gene and several members of the MAGE gene cluster.
View Article and Find Full Text PDFOvarian cancer is currently the most lethal gynecological malignancy in the United States. Although effective therapies exist, the acquisition of multidrug resistance within persisting tumor cells renders curative therapies elusive for the majority of women with ovarian cancer. In an attempt to better define the evolution of paclitaxel resistance, three SKOV-3 sublines were selected during successive rounds of exposure to increasing paclitaxel concentrations.
View Article and Find Full Text PDF