Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO reduction reactions (CORR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst.
View Article and Find Full Text PDFThe burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO and CH). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH exceeds CO in the feedstock.
View Article and Find Full Text PDFBy inducing CO-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (HO) and oxalate directly from CO and water. With isotope-labeled CO as the feedstock, peaks of HOO and HO observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO dissociations and HO-derived OH radicals both contribute to HO formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO (aq) and HCO (aq) formation and their subsequent coupling to produce oxalate.
View Article and Find Full Text PDFAmmonia plays a crucial role in industry and agriculture worldwide, but traditional industrial ammonia production methods are energy-intensive and negatively impact the environment. Ammonia synthesis using low-temperature plasma technology has gained traction in the pursuit of environment-benign and cost-effective methods for producing green ammonia. This Review discusses the recent advances in low-temperature plasma-assisted ammonia synthesis, focusing on three main routes: N+H plasma-only, N+HO plasma-only, and plasma coupled with other technologies.
View Article and Find Full Text PDFA novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms.
View Article and Find Full Text PDFNatural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs.
View Article and Find Full Text PDFInulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation.
View Article and Find Full Text PDFSurimi products have unsatisfactory gel properties. Hence, this study evaluates the effect of collagen-adding on surimi gel properties and provides the first observation results regarding collagen type influence. With higher water solubility and more charged amino acids than type II, collagen type I intertwines with surimi myofibrillar proteins better to induce higher exposure of protein functional domains, more sufficient conformational changes of myosin and greater formation of chemical forces among proteins.
View Article and Find Full Text PDFAstaxanthin is used extensively in the nutraceutical, aquaculture, and cosmetic industries. The current market necessitates higher astaxanthin production from Phaffia rhodozyma (P. rhodozyma) due to its higher cost compared to chemical synthesis.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing β-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species.
View Article and Find Full Text PDFThe mutating SARS-CoV-2 potentially impairs the efficacy of current vaccines or antibody-based treatments. Broad-spectrum and rapid anti-virus methods feasible for regular epidemic prevention against COVID-19 or alike are urgently called for. Using SARS-CoV-2 virus and bioengineered pseudoviruses carrying ACE2-binding spike protein domains, we examined the efficacy of cold atmospheric plasma (CAP) on virus entry prevention.
View Article and Find Full Text PDFAntibiotics have been extensively used as pharmaceuticals for diverse applications. However, their overuse and indiscriminate discharge to water systems have led to increased antibiotic levels in our aquatic environments, which poses risks to human and livestock health. Non-thermal plasma water.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) has emerged as a highly selective anticancer agent, most recently in the form of plasma-activated medium (PAM). Since epithelial-mesenchymal transition (EMT) has been implicated in resistance to various cancer therapies, we assessed whether EMT status is associated with PAM response. Mesenchymal breast cancer cell lines, as well as the mesenchymal variant in an isogenic EMT/MET human breast cancer cell system (PMC42-ET/LA), were more sensitive to PAM treatment than their epithelial counterparts, contrary to their responses to other therapies.
View Article and Find Full Text PDFComplete degradation of mixtures of organic pollutants is a major challenge due to their diverse degradation pathways. In this work, a novel microplasma bubble (MPB) reactor was developed to generate plasma discharges inside small forming bubbles as an effective mean of delivering reactive species for the degradation of the target organic contaminants. The results show that the integration of plasma and bubbles resulted in efficient degradation for all azo, heterocyclic, and cationic dyes, evidenced by the outstanding energy efficiency of 13.
View Article and Find Full Text PDFEfficient and selective internalization of nanoscale diamonds (also termed nanodiamonds, NDs) by living cells is of fundamental importance for their bionanotechnological applications. The biocompatibility of NDs is well established and has been suggested to arise from the limited membrane perturbation during their cellular translocation. However, the latter may be affected when cells are subjected to external stress.
View Article and Find Full Text PDFBioresour Technol
December 2020
Lignin valorisation into renewable fuels and platform chemicals is desirable but still encounters major challenges due to lignin's recalcitrant structure, and the lack of cost-, energy-, and material efficient conversion processes. Herein, we report a low-temperature plasma-based route to lignin depolymerisation at mild conditions. The discharge over ethanol surface locally creating a high-energy and reactive environment rich in free electrons, energetic H radicals, and other reactive species, is well suited for lignin depolymerisation.
View Article and Find Full Text PDFSilver nanoparticles have applications in plasmonics, medicine, catalysis and electronics. We report a simple, cost-effective, facile and reproducible technique to synthesise silver nanoparticles via plasma-induced non-equilibrium liquid chemistry with the absence of a chemical reducing agent. Silver nanoparticles with tuneable sizes from 5.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2019
Transition metal compounds such as nickel cobalt sulfides (Ni-Co-S) are promising electrode materials for energy storage devices such as supercapacitors owing to their high electrochemical performance and good electrical conductivity. Developing ultrathin nanostructured materials is critical to achieving high electrochemical performance, because they possess rich active sites for electrochemical reactions, shortening the transport path of ions in the electrolyte during the charge/discharge processes. This paper describes the synthesis of ultrathin (around 10 nm) flower-like Ni Co S nanoflakes by using templated NiCo oxides.
View Article and Find Full Text PDFConversion of renewable biomass by time- and energy-efficient techniques remains an important challenge. Herein, plasma catalytic liquefaction (PCL) is employed to achieve rapid liquefaction of microalgae under mild conditions. The choice of the catalyst affects both the liquefaction efficiency and the yield of products.
View Article and Find Full Text PDFInteractions between effects generated by cold atmospheric-pressure plasmas and water have been widely investigated for water purification, chemical and nanomaterial synthesis, and, more recently, medicine and biotechnology. Reactive oxygen and nitrogen species (RONS) play critical roles in transferring the reactivity from gas plasmas to solutions to induce specific biochemical responses in living targets, e.g.
View Article and Find Full Text PDFThe most common malignancy in women, breast cancer remains a major medical challenge that affects the life of thousands of patients every year. With recognized benefits to body image and self-esteem, the use of synthetic mammary implants for elective cosmetic augmentation and post-mastectomy reconstruction continues to increase. Higher breast implant use leads to an increased occurrence of implant-related complications associated with implant leakage and rupture, capsular contracture, necrosis and infections, which include delayed healing, pain, poor aesthetic outcomes and the need for revision surgeries.
View Article and Find Full Text PDF