Publications by authors named "Rus G"

Article Synopsis
  • The study introduces a new preclinical device that uses Torsional Wave Elastography (TWE) to measure the stiffness of elastic materials and soft tissues.
  • The device consists of a rotational actuator and a piezoceramic receiver, allowing shear waves to interact with tissue before being collected for analysis.
  • Experimental tests showed that the device provides reliable, accurate stiffness measurements, with over 95% correlation to established techniques, suggesting potential for medical applications, especially in studying cervical properties during pregnancy.
View Article and Find Full Text PDF

Estimating the tissue parameters of skin tumors is crucial for diagnosis and effective therapy in dermatology and related fields. However, identifying the most sensitive biomarkers require an optimal rheological model for simulating skin behavior this remains an ongoing research endeavor. Additionally, the multi-layered structure of the skin introduces further complexity to this task.

View Article and Find Full Text PDF

This paper presents a novel method for reconstructing skin parameters using Probabilistic Inverse Problem (PIP) techniques and Torsional Wave Elastography (TWE) rheological modeling. A comprehensive examination was conducted to compare and analyze the theoretical, time-of-flight (TOF), and full-signal waveform (FSW) approaches. The objective was the identification of the most effective method for the estimation of mechanical parameters.

View Article and Find Full Text PDF

A new reconstruction approach that combines Reverse Time Migration (RTM) and Genetic Algorithms (GAs) is proposed for solving the inverse problem associated with transluminal shear wave elastography. The transurethral identification of the first thermal lesion generated by transrectal High Intensity Focused Ultrasound (HIFU) for the treatment of prostate cancer, was used to preliminarily test in silico the combined reconstruction method. The RTM method was optimised by comparing reconstruction images from several cross-correlation techniques, including a new proposed one, and different device configurations in terms of the number and arrangement of emitters and receivers of the conceptual transurethral probe.

View Article and Find Full Text PDF

Measuring the mechanical nonlinear properties of the cornea remains challenging due to the lack of consensus in the methodology and in the models that effectively predict its behaviour. This study proposed developing a procedure to reconstruct nonlinear fourth-order elastic properties of the cornea based on a mathematical model derived from the theory of Hamilton et al. and using the torsional wave elastography (TWE) technique.

View Article and Find Full Text PDF

The Problem: Single-incision surgery is a complex procedure in which any additional information automatically collected from the operating field can be of significance. While the use of robotic devices has greatly improved surgical outcomes, there are still many unresolved issues. One of the major surgical complications, with higher occurrence in cancer patients, is intraoperative hemorrhages, which if detected early, can be more efficiently controlled.

View Article and Find Full Text PDF

The propagation of shear waves in elastography at high frequency (>3 kHz) in viscoelastic media has not been extensively studied due to the high attenuation and technical limitations of current techniques. An optical micro-elastography (OME) technique using magnetic excitation for generating and tracking high frequency shear waves with enough spatial and temporal resolution was proposed. Ultrasonics shear waves (above 20 kHz) were generated and observed in polyacrylamide samples.

View Article and Find Full Text PDF

Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, translating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in vitro and in vivo biological levels.

View Article and Find Full Text PDF

Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization.

View Article and Find Full Text PDF

Osteoarthritis is a disease with a great socioeconomic impact and mainly affects articular cartilage, a tissue with reduced self-healing capacity. In this work, 3D printed 1,4 butanediol thermoplastic polyurethane (b-TPUe) scaffolds are functionalized and infrapatellar mesenchymal stem cells are used as the cellular source. Since b-TPUe is a biomaterial with mechanical properties similar to cartilage, but it does not provide the desired environment for cell adhesion, scaffolds are functionalized with two methods, one based on collagen type I and the other in 1-pyrenebutiric acid (PBA) as principal components.

View Article and Find Full Text PDF

Concrete-filled steel tubes (CFSTs) are structural elements that, as a consequence of an incorrect elaboration, can exhibit internal defects that cannot be visualized, being usually air voids. In this work, the detection of internal damage in CFST samples elaborated with a percentage of contained air voids in concrete, was carried out by performing a complete ultrasound scan using an immersion tank. The analysis of the ultrasound signals shows the differences presented in the amplitude of the fundamental frequency of the signal, and in the Broadband Ultrasound Attenuation (BUA), in comparison with a sample without defects.

View Article and Find Full Text PDF

Thermoplastic resin fiber composites have an easy fabrication process, good mechanical properties, and compatible stiffness to tooth dentin. However, they have not yet attracted much interest in the field of dentistry. The current study was carried out to test a new proposed approach to manufacture a fiber reinforced composite endodontic post and evaluate its flexural strength through a two-point inclined loading test.

View Article and Find Full Text PDF

Corneal mechanical changes are believed to occur before any visible structural alterations observed during routine clinical evaluation. This study proposed developing an elastography technique based on torsional waves (TWE) adapted to the specificities of the cornea. By measuring the displacements in the propagation plane perpendicular to the axis of the emitter, the effect of guided waves in plate-like media was proven negligible.

View Article and Find Full Text PDF

Fractional viscoelastic rheological models, such as the Kelvin Voigt Fractional Derivative model, have been proposed in the literature for modelling shear wave propagation in soft tissue. In this article, our previously developed wave propagation model for transluminal propagation based on a Kelvin Voigt Fractional Derivative wave equation is experimentally validated. The transluminal procedure uses the transmission and detection of shear waves through the luminal wall.

View Article and Find Full Text PDF

The Finite Element Method (FEM) models are valuable tools to create an idea of the behavior of any structure. The complexity of the joints, materials, attachment areas, and boundary conditions is an open issue in biomechanics that needs to be addressed. Scapholunate instability is the leading cause of wrist pain and disability among patients of all ages.

View Article and Find Full Text PDF

Mechanical compatibility with the human dentin is a considerable issue when fabricating dental fiber posts. To this purpose, this study introduces a new method of fabricating compatible dental posts using braiding techniques of thermoplastic fibers (matrix) with glass fibers (reinforcement). Fifty fiber-reinforced composite (FRC) posts of thermoplastic yarns polypropylene (PP) braided with continuous filaments glass fibers (GFs) for reinforcement, varying in fiber volume fraction (FVF), and core types are fabricated and tested.

View Article and Find Full Text PDF

In this article, a wave propagation model is presented as the first step in the development of a new type of transluminal procedure for performing elastography. Elastography is a medical imaging modality for mapping the elastic properties of soft tissue. The wave propagation model is based on a Kelvin Voigt Fractional Derivative (KVFD) viscoelastic wave equation, and is numerically solved using a Finite Difference Time Domain (FDTD) method.

View Article and Find Full Text PDF

Experimental evidence on testing a non-ultrasonic-based probe for a new approach in transluminal elastography was presented. The proposed modality generated shear waves by inducing oscillatory rotation on the lumen wall. Detection of the propagated waves was achieved at a set of receivers in mechanical contact with the lumen wall.

View Article and Find Full Text PDF

The most pressing need in cartilage tissue engineering (CTE) is the creation of a biomaterial capable to tailor the complex extracellular matrix of the tissue. Despite the standardized used of polycaprolactone (PCL) for osteochondral scaffolds, the pronounced stiffness mismatch between PCL scaffold and the tissue it replaces remarks the biomechanical incompatibility as main limitation. To overcome it, the present work was focused in the design and analysis of several geometries and pore sizes and how they affect cell adhesion and proliferation of infrapatellar fat pad-derived mesenchymal stem cells (IPFP-MSCs) loaded in biofabricated 3D thermoplastic scaffolds.

View Article and Find Full Text PDF

The understanding of changes in the viscoelastic properties of cervical tissue during the gestation process is a challenging problem. In this work, we explore the importance of considering the multilayer nature (epithelial and connective layers) of human cervical tissue for characterizing the viscoelastic parameters from torsional waves. For this purpose, torsional wave propagations are simulated in three multilayer cervical tissue models (pure elastic, Kelvin-Voigt (KV) and Maxwell) using the finite difference time domain method.

View Article and Find Full Text PDF

Transient or acoustic radiation force elastography (ARFE) is becoming the most extended technology to assess cervical effacement, additionally to the Bishop test and conventional ultrasound. However, a debate on the fetal safety has been opened due to the high intensity focused beam emitted to produce shear waves. This work is aimed at providing preliminary data to assess clinical effects of fetal exposure.

View Article and Find Full Text PDF

This paper presents the results of the comparison between a proposed Fourth Order Elastic Constants (FOECs) nonlinear model defined in the sense of Landau's theory, and the two most contrasted hyperelastic models in the literature, Mooney-Rivlin, and Ogden models. A mechanical testing protocol is developed to investigate the large-strain response of ex vivo cervical tissue samples in uniaxial tension in its two principal anatomical locations, the epithelial and connective layers. The final aim of this work is to compare the reconstructed shear modulus of the epithelial and connective layers of cervical tissue.

View Article and Find Full Text PDF

The objective of this study was to evaluate which hyperelastic model could best describe the non-linear mechanical behavior of the cornea, in order to characterize the capability of the non-linear model parameters to discriminate structural changes in a damaged cornea. Porcine corneas were used, establishing two different groups: control (non-treated) and NaOH-treated (damaged) corneas (n = 8). NaOH causes a chemical burn to the corneal tissue, simulating a disease associated to structural damage of the stromal layer.

View Article and Find Full Text PDF