Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-throughput screening (HTS) system that leads to an identification of EMT inhibitors.
View Article and Find Full Text PDFThree-dimensional (3D) cell culture is beneficial for physiological studies of tumor cells, due to its potential to deliver a high quantity of cell culture information that is representative of the cancer microenvironment and predictive of drug responses in vivo. Currently, gel-associated or matrix-associated 3D cell culture is comprised of intricate procedures that often result in experimental complexity. Therefore, we developed an innovative anti-cancer drug sensitivity screening technique for 3D cell culture on NanoCulture Plates (NCP) by employing the imaging device BioStation CT.
View Article and Find Full Text PDFChemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines.
View Article and Find Full Text PDFHere, we report the highly efficient in vitro differentiation of human bone marrow-derived mesenchymal stem/progenitor cells (MPCs) using a novel nanotechnology-based culture plate, nanoculture plate(®) (NCP). The NCP contains uneven microfabrications with diameters of ∼2-3 μm arranged in a honeycomb pattern on its culture surface, which is devoid of animal-derived protein sources. When human MPCs were subjected to three-dimensional (3D) culture using an NCP, they rapidly formed adhesive spheroids.
View Article and Find Full Text PDFThe major Smad pathways serve in regulating the expression of genes downstream of TGFbeta signals. In this study, we examined the effects of sustained Smad7 expression in cultured cells. Interestingly, Smad7 caused various mesenchymal cells, including NIH3T3 fibroblast and ST2 bone-marrow stromal cells, to undergo a marked morphological alteration into a flattened cell shape, but kept them alive for as long as 60 days.
View Article and Find Full Text PDFThe Pax6 gene plays crucial roles in eye development and encodes a transcription factor containing both a paired domain and a homeodomain. During embryogenesis, Pax6 is expressed in restricted tissues under the direction of distinct cis-regulatory regions. The head surface ectoderm-specific enhancer of mouse Pax6 directs reporter expression in the derivatives of the ectoderm in the eye, such as lens and cornea, but the molecular mechanism of its control remains largely unknown.
View Article and Find Full Text PDF