The DNA damage response is a highly orchestrated process. The involvement of the DNA damage response factors in DNA damage response depends on their biochemical reactions with each other and with chromatin. Using online live-cell imaging combined with heavy ion microbeam irradiation, we studied the response of the scaffold protein X-ray repair cross-complementary protein 1 (XRCC1) at the localized DNA damage in charged particle irradiated HT1080 cells expressing XRCC1-tagged RFP.
View Article and Find Full Text PDFIn this work, we demonstrate a process having the capability to realize single-digit nanometer lithography using single heavy ions. By adopting 2.15 GeV Kr ions as the exposure source and hydrogen silsesquioxane (HSQ) as a negative-tone inorganic resist, ultrahigh-aspect-ratio nanofilaments with sub-5 nm feature size, following the trajectory of single heavy ions, were reliably obtained.
View Article and Find Full Text PDFThe dynamic structure of nuclear chromatin and its regulation in the formation of repair complex is essential in DNA damage response and repair. Using single molecule localization microscopy STORM this work discovered that the nuclear chromatin organization was relaxed from 200 to 400 nm thick irregular frame and remodeled to dispersed sub-100 nm structure in HeLa cells after X-ray irradiation. The DSB repair factors (γ-H2AX, MDC1, 53BP1) showed distribution as microscale-colocalized and nanoscale interlaced substructure in the DSB repair complex.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Rectified ion transport in nanochannels is the basis of ion channels in biological cells and has inspired emerging nanochannel applications in ion separation, Coulter counters, and biomolecule detection and nanochannel energy harvesters. In this work we fabricated a polyethylene terephthalate (PET) conical nanochannel using latent ion track etching technique and then systematically studied the ion transport and influence of cation species on the nanochannel surface with cyclic - measurement. We discovered the electrical regulation of the reversible and irreversible modification of the nanochannel transportation by bivalent and trivalent cations, revealing the existence of the switching threshold voltage which can control the current rectification in bivalent solution.
View Article and Find Full Text PDFDNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online.
View Article and Find Full Text PDFTo study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of (12)C(6+) with energy of 80.
View Article and Find Full Text PDFThe literature on the impact of strong static magnetic fields (SMF) on human health is vast and contradictory. The present study focused on the cellular effects of strong homogeneous SMF in human-hamster hybrid (A(L) ) cells, mitochondria-deficient (ρ(0) A(L) ) cells, and double-strand break (DSB) repair-deficient (XRS-5) cells. Adenosine triphosphate (ATP) content was significantly decreased in A(L) cells exposed to 8.
View Article and Find Full Text PDF