IEEE/ACM Trans Comput Biol Bioinform
December 2021
As the first step of machine-learning based protein structure and function prediction, the amino acid encoding play a fundamental role in the final success of those methods. Different from the protein sequence encoding, the amino acid encoding can be used in both residue-level and sequence-level prediction of protein properties by combining them with different algorithms. However, it has not attracted enough attention in the past decades, and there are no comprehensive reviews and assessments about encoding methods so far.
View Article and Find Full Text PDFBMC Bioinformatics
September 2017
Background: In structural biology area, protein residue-residue contacts play a crucial role in protein structure prediction. Some researchers have found that the predicted residue-residue contacts could effectively constrain the conformational search space, which is significant for de novo protein structure prediction. In the last few decades, related researchers have developed various methods to predict residue-residue contacts, especially, significant performance has been achieved by using fusion methods in recent years.
View Article and Find Full Text PDFMuch progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods.
View Article and Find Full Text PDF