Fibres in the micro- and nanometre scale are suited to a broad range of applications, including drug delivery and tissue engineering. Electrospinning is the manufacturing method of choice, but it has some limitations. Novel pressure-driven fibre-forming techniques, like pressurised gyration (PG), overcome these limitations; however, the compatibility of PG with biological materials has not yet been evaluated in detail.
View Article and Find Full Text PDFBioengineering (Basel)
October 2023
With the rise of antibiotic resistance, the drive to discover novel antimicrobial substances and standard testing methods with the aim of controlling transmissive diseases are substantially high. In healthcare sectors and industries, although methods for testing antibiotics and other aqueous-based reagents are well established, methods for testing nanomaterials, non-polar and other particle-based suspensions are still debatable. Hence, utilities of ISO standard validations of such substances have been recalled where corrective actions had to be taken.
View Article and Find Full Text PDFSurgical sutures designed to prevent infection are critical in addressing antibiotic-resistant pathogens that cause surgical site infections. Instead of antibiotics, alternative materials such as biocides have been assessed for coating commercially used sutures due to emerging antibiotic resistance concerns worldwide. This study has a new approach to the development of fibrous surgical sutures with the ability to deliver localized antibacterial agents.
View Article and Find Full Text PDFAs the world has experienced in the Coronavirus Disease 2019 pandemic, viral infections have devastating effects on public health. Personal protective equipment with high antiviral features has become popular among healthcare staff, researchers, immunocompromised people and more to minimize this effect. Graphene and its derivatives have been included in many antimicrobial studies due to their exceptional physicochemical properties.
View Article and Find Full Text PDFNatural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against and using flow cytometry.
View Article and Find Full Text PDFViral pandemic outbreaks cause a significant burden on global health as well as healthcare expenditure. The use of antiviral agents not only reduces the spread of viral pathogens but also diminishes the likelihood of them causing infection. The antiviral properties of novel copper-silver and copper-zinc intermetallic nanoparticles against bacteriophage MS2 (RNA virus) and bacteriophage T4 (DNA virus) are presented.
View Article and Find Full Text PDFViral infections alone are a significant cause of morbidity and mortality worldwide and have a detrimental impact on global healthcare and socio-economic development. The discovery of novel antiviral treatments has gained tremendous attention and support with the rising number of viral outbreaks. In this work, carbonaceous materials, including graphene nanoplatelets and graphene oxide nanosheets, were investigated for antiviral properties.
View Article and Find Full Text PDFA significant proportion of patients acquire hospital associated infections as a result of care within the NHS each year. Numerous antimicrobial strategies, such as antibiotics and surface modifications to medical facilities and instruments, have been devised in an attempt to reduce the incidence of nosocomial infections, but most have been proven unsuccessful and unsustainable due to antibiotic resistance. Therefore, the need to discover novel materials that can combat pathogenic microorganisms is ongoing.
View Article and Find Full Text PDFThe use of combination therapies for the treatment of a range of conditions is now well established, with the component drugs usually being delivered either as distinct medicaments or combination products that contain physical mixes of the two active ingredients. There is, however, a compelling argument for the development of compartmentalised systems whereby the release, stability and incorporation environment of the different drugs may be tailored. Here we outline the development of polymeric fine fiber systems whereby two drugs used for the treatment of wounds may be separately incorporated.
View Article and Find Full Text PDFAntibacterial polymer nanocomposite fibre meshes containing graphene oxide (GO) nanosheets were successfully prepared by pressurised gyration. The morphological and chemical composition of the resulting fibre meshes were determined using Scanning Electron Microscopy (SEM), Raman spectroscopy, Raman mapping and Fourier-Transform Infrared Spectroscopy (FT-IR). SEM showed the fibres to have an average diameter increasing from ~1-4 µm as the GO loading increased.
View Article and Find Full Text PDFA novel class of ultra-thin fibres, which affect microbial growth, were explored. The microbial properties of poly(methyl methacrylate) fibres containing 2, 4 and 8 wt% of graphene nanoplatelets (GNPs) were studied. GNPs were dispersed in a polymeric solution and processed using pressurized gyration.
View Article and Find Full Text PDFThe exploration of nanocomposites has gained a strong research following over the last decade. These materials have been heavily exploited in several fields, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of microbiology, specifically as antimicrobial agents.
View Article and Find Full Text PDFUnlabelled: Progress in tissue engineering is dependent on the availability of suitable biomaterials. In an effort to overcome the brittleness of poly(3-hydroxybutyrate), P(3HB), a natural biodegradable polyester, and widen its biomedical applications, plasticising of P(3HB) with oligomeric substances of related structure has been studied. A biosynthesised medium-chain-length polyhydroxyalkanoate (mcl-PHA) copolymer, the plasticiser precursor, was obtained using vegetable waste frying oil as a sole carbon source.
View Article and Find Full Text PDFThe selection of a solvent or solvent system and the ensuing polymer⁻solvent interactions are crucial factors affecting the preparation of fibers with multiple morphologies. A range of poly(methylmethacrylate) fibers were prepared by pressurised gyration using acetone, chloroform, -dimethylformamide (DMF), ethyl acetate and dichloromethane as solvents. It was found that microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent.
View Article and Find Full Text PDFThree antimicrobial nanoparticle types (AMNP0, AMNP1, and AMNP2) produced using the Tesima thermal plasma technology were investigated and their compositions were determined using a combination of analytical methods. Scanning electron micrographs provided the morphology of these particles with observed sizes ranging from 10 to 50 nm, whilst FTIR spectra confirmed the absence of polar bonds and organic impurities, and strong Raman active vibrational bands at ca. 1604 and 1311 cm ascribed to C-C vibrational motions were observed.
View Article and Find Full Text PDF