Publications by authors named "Ruping Chen"

Picrosirius red staining constitutes an important and broadly used tool to visualize collagen and fibrosis in various tissues. Although multiple qualitative and quantitative analysis methods to evaluate fibrosis are available, many require specialized devices and software or lack objectivity and scalability. Here, we aimed to develop a versatile and powerful "" macro in the FIJI image processing software capable of automated, robust, and quick collagen quantification in cardiac tissue from light micrographs.

View Article and Find Full Text PDF
Article Synopsis
  • Antarctic krill is a valuable source of animal proteins, seen as a promising ingredient for healthy marine foods and functional products.
  • Researchers hydrolyzed Antarctic krill proteins using various enzymes, finding that trypsin-derived hydrolysates had the best calcium (Ca) chelating ability under specific conditions.
  • Fourteen Ca-chelating peptides were identified, with the peptide VERG displaying the strongest Ca-binding capacity, stability during digestion, and potential to enhance calcium transport, although absorption is affected by phytate.
View Article and Find Full Text PDF

Background: Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered.

View Article and Find Full Text PDF

Background: The hypertriglyceridemic waist (HTGW) phenotype has been proposed to be related to the occurrence and progression of chronic kidney disease (CKD). The ageing trend of the Chinese population continues to intensify, and elderly individuals are at high risk of CKD. The purpose of this study was to investigate the cross-sectional and longitudinal associations between the HTGW phenotype and the risk of CKD by following community-dwelling adults aged 60 years and older in Tianjin, China, for 7 years.

View Article and Find Full Text PDF

Tissue stem cells undergo premature senescence under stress, promoting age-related diseases; however, the associated mechanisms remain unclear. Here, we report that in response to radiation, oxidative stress, or bleomycin, the E3 ubiquitin ligase FBW7 mediates cell senescence and tissue fibrosis through telomere uncapping. FBW7 binding to telomere protection protein 1 (TPP1) facilitates TPP1 multisite polyubiquitination and accelerates degradation, triggering telomere uncapping and DNA damage response.

View Article and Find Full Text PDF

Sestrin1 (Sesn1) acts as a stress-inducible protein that performs a remarkable cytoprotective function upon diverse cellular stresses. However, whether Sesn1 exerts a cytoprotective role in neurons following cerebral ischemia/reperfusion injury is unknown. The goal of this work was to evaluate the role of Sesn1 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro.

View Article and Find Full Text PDF

Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from mutations in DNAJC19. Two patient-derived dermal fibroblast cell lines of siblings with the same homozygous splice acceptor site mutation in DNAJC19 (NM_145261.4):c.

View Article and Find Full Text PDF

Despite the achievement of blood glucose, blood pressure targets, the risk for kidney injury remains high among older adults. This observational retrospective study investigated whether high TG or high WC contribute to this high residual risk for kidney injury. A total of 843 elderly from Dongli Community, Tianjin, China, we selected 666 individuals with a baseline estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.

View Article and Find Full Text PDF

Nuclear envelope proteins have been shown to play an important role in the pathogenesis of inherited dilated cardiomyopathy. Here, we present a remarkable cardiac phenotype caused by a homozygous mutation in patients of the Hutterite population with juvenile cataract. Mutation carriers develop arrhythmic cardiomyopathy with mild impairment of left ventricular systolic function but severe ventricular arrhythmias leading to sudden cardiac death.

View Article and Find Full Text PDF

Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis.

View Article and Find Full Text PDF

Mutations of human telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) are associated with a subset of lung aging diseases, but the mechanisms by which TERC and TERT participate in lung diseases remain unclear. In this report, we show that knock-out (KO) of the mouse gene Terc or Tert causes pulmonary alveolar stem cell replicative senescence, epithelial impairment, formation of alveolar sacs, and characteristic inflammatory phenotype. Deficiency in TERC or TERT causes a remarkable elevation in various proinflammatory cytokines, including IL-1, IL-6, CXCL15 (human IL-8 homolog), IL-10, TNF-α, and monocyte chemotactic protein 1 (chemokine ligand 2 (CCL2)); decrease in TGF-β1 and TGFβRI receptor in the lungs; and spillover of IL-6 and CXCL15 into the bronchoalveolar lavage fluids.

View Article and Find Full Text PDF

SIRT7 with coenzyme NAD catalyzes protein de-acetylation. In stress response, SIRT7 regulates protein folding in mitochondria with unknown mechanisms. Decreases in SIRT7 entrain hematopoietic stem cell senescence, but increasing SIRT7 causes elevation of hematopoietic stem cell regenerative function.

View Article and Find Full Text PDF

Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3 + 1] form-one human telomeric intra-molecular G-quadruplex.

View Article and Find Full Text PDF

Mechanistic investigations have shown that, upon agonist activation, hydroxy-carboxylic acid receptor-1(HCA1) couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for HCA1 signaling remain largely unknown. Using CHO-K1 cells stably expressing HCA1, and L6 cells, which endogenously express rat HCA1 receptors, we found that activation of ERK1/2 by HCA1 was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin.

View Article and Find Full Text PDF

Efforts to get a strong and sustained anti-tumour immune response induced by a tumour specific antigen have failed, but sipuleucel-T has been approved by the US Food and Drug Administration (FDA). We noticed that exosomes secreted by tumour cells or immune cells may be crucially involved in the tumour immune response, whereas others have had inconsistent findings on exosome involvement. Based on immune network theory, we summarise research advances of exosomes and speculate that in the tumour immune response exosomes follow the immune response curve hypothesis.

View Article and Find Full Text PDF

Background: Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms.

Results: This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models.

View Article and Find Full Text PDF

The purpose of this study is to investigate the influence of mitochondrial respiratory chain complex I inhibition on the radiosensitivity of HepG2 cells. The complex I inhibitor rotenone was used to inhibit complex I activity on HepG2 cells before X-ray irradiation. The cytotoxicity of rotenone was analyzed by MTT assay at various doses.

View Article and Find Full Text PDF