Publications by authors named "Rupeng Qi"

The general synthesis of chiral unnatural aromatic amino acids has rarely been reported. We herein describe a visible light-promoted copper-catalyzed enantioselective C(sp)-H benzylation of glycine derivatives. The method demonstrated compatibility in coupling various -hydroxyphthalimide (NHP) esters derived from aromatic acids with glycine derivatives, providing a general protocol for synthesizing analogues of phenylalanine, tryptophan, and tyrosine.

View Article and Find Full Text PDF

ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability.

View Article and Find Full Text PDF

Alkylnitriles play important roles in many fields because of their unique electronic properties and structural characteristics. Incorporating cyanoalkyl with characteristic spectroscopy and reactivity properties into amino acids and peptides is of special interest for potential imaging and therapeutic purposes. Here, we report a copper-catalyzed asymmetric cyanoalkylation of C(sp)-H.

View Article and Find Full Text PDF

Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.

View Article and Find Full Text PDF

The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation.

View Article and Find Full Text PDF
Article Synopsis
  • The asymmetric functionalization of C-H bonds is a key method in creating specific molecular structures in organic chemistry, but achieving C(sp)-H alkylation has been less explored.
  • Recent advancements in photoredox catalysis have shown promise for making these reactions happen more efficiently and selectively under mild conditions.
  • This study presents a new approach using visible light and copper as a catalyst for effective and enantioselective C-H alkylation, which can be applied to synthesize important compounds in drug discovery and peptide synthesis.
View Article and Find Full Text PDF

Disclosed herein is the visible-light-promoted deaminative C(sp )-H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional-group tolerance provide a general strategy for the efficient preparation of unnatural α-amino acids and precise modification of peptides with unnatural α-amino-acid residues. Mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within a glycine-Katritzky salt electron donor-acceptor (EDA) complex induces a single-electron transfer process without the assistance of photocatalyst.

View Article and Find Full Text PDF

We here report the photoinduced Cu-catalyzed cyanoalkylation of electron-deficient alkenes by using alkyl bromides as alkylation reagents. In the reactions, 1°, 2°, and 3° unactivated alkyl bromides with various sensitive functional groups were well tolerated with good yields. Notably, terminal and internal alkenes, as well as alkene-containing peptides, were all tolerated well.

View Article and Find Full Text PDF

Despite a well-developed and growing body of work in Cu catalysis, the potential of Cu to serve as a photocatalyst remains underexplored. Reported herein is the first example of visible-light-induced Cu-catalyzed decarboxylative C(sp )-H alkylation of glycine for preparing α-alkylated unnatural α-amino acids. It merits mentioning that the mild conditions and the good functional-group tolerance allow the modification of peptides using this method.

View Article and Find Full Text PDF

In the past years, the activations of aromatic nitriles for radical arylations under photoirradiation have been developed. We here report the first example of radical arylations using aromatic nitriles without the assistance of photoirradiation. Importantly, with this method, the direct arylation of C(sp)-H in benzyl amines provided a practical method for the synthesis of diarylmethylamines without the use of precious transition metal catalysts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session19b491tk9jae4nr4bi0mj7cuidmq5345): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once