Primary open-angle glaucoma (POAG) is subdivided depending on eye pressure. Patients with normal-tension glaucoma (NTG) have never had high intraocular pressure (IOP) measured while patients with ocular hypertension (OHT) have high eye pressure but no signs of glaucoma. Although IOP is considered to be a risk factor for all glaucoma patients, it is reasonable to assume that other risk factors such as inflammation play a role.
View Article and Find Full Text PDFGlaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs). The main risk factor is elevated intraocular pressure (IOP), but the actual cause of the disease remains unknown. Emerging evidence indicates that metabolic dysfunction plays a central role.
View Article and Find Full Text PDFBackground: Progressive retinal ganglion cell (RGC) dysfunction and death are common characteristics of retinal neurodegenerative diseases. Recently, hydroxycarboxylic acid receptor 1 (HCAR, GPR81) was identified as a key modulator of mitochondrial function and cell survival. Thus, we aimed to test whether activation of HCAR with 3,5-Dihydroxybenzoic acid (DHBA) also promotes RGC survival and improves energy metabolism in mouse retinas.
View Article and Find Full Text PDFGlaucoma is a common ocular neurodegenerative disease characterized by the progressive loss of retinal ganglion cells and their axons. It is the most common cause of irreversible blindness. With an increasing number of glaucoma patients and disease progression despite treatment, it is paramount to develop new and effective therapeutics.
View Article and Find Full Text PDFIncreasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments.
View Article and Find Full Text PDFIntroduction: Most intraocular pressure (IOP)-lowering eye drops are preserved with benzalkonium chloride (BAK). This can increase side effects and decrease adherence. Particularly, damage to the mucin-producing conjunctival goblet cells may be an issue due to instability of the tear film.
View Article and Find Full Text PDFPurpose: To investigate whether patients with normal tension glaucoma (NTG) show an enhanced stress response to reduced oxygen supply compared to age-matched healthy controls, measured by serum adrenaline and endothelin-1 (ET-1) levels and changes in distal finger temperature.
Methods: A thorough clinical characterization of patients with NTG and age-matched controls was performed prior to inclusion in the study. Twelve patients with NTG and eleven healthy controls met the inclusion criteria and were enrolled in the study.
Visual changes are some of the earliest symptoms that patients with Alzheimer's disease (AD) experience. Pathophysiological processes such as amyloid-β plaque formation, vascular changes, neuroinflammation, and loss of retinal ganglion cells (RGCs) have been detected in the retina of AD patients and animal models. However, little is known about the molecular processes that underlie retinal neurodegeneration in AD.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults.
View Article and Find Full Text PDFPurpose: Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2022
Estrogen is essential in maintaining various physiological features in women, and a decline in estrogen levels are known to give rise to numerous unfortunate symptoms associated with menopause. To alleviate these symptoms hormone replacement therapy with estrogen is often used, and has been shown to be fruitful in improving quality of life in women suffering from postmenopausal discomforts. An often forgotten condition associated with menopause is the optic nerve disorder, glaucoma.
View Article and Find Full Text PDFThe retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2019
Purpose: Besides being actively metabolized, lactate may also function as a signaling molecule by activation of the G-protein-coupled receptor 81 (GPR81). Thus, we aimed to characterize the metabolic effects of GPR81 activation in Müller cells.
Method: Primary Müller cells from mice were treated with and without 10 mM L-lactate in the presence or absence of 6 mM glucose.
Loss of retinal ganglion cells (RGCs) is a leading cause of blinding conditions. The purpose of this study was to evaluate the effect of extracellular l-lactate on RGC survival facilitated through lactate metabolism and ATP production. We identified lactate as a preferred energy substrate over glucose in murine RGCs and showed that lactate metabolism and consequently increased ATP production are crucial components in promoting RGC survival during energetic crisis.
View Article and Find Full Text PDFPurpose: To assess novel differences in serum levels of glucose, lactate and amino acids in patients with normal-tension glaucoma (NTG) compared to age-matched controls, at baseline and in response to universal hypoxia.
Methods: Twelve patients diagnosed with NTG and eleven control subjects underwent normobaric hypoxia for 2 hr. Peripheral venous blood samples were taken at baseline, during hypoxia and in the recovery phase.
Müller cells are pivotal in sustaining retinal ganglion cells, and an intact energy metabolism is essential for upholding Müller cell functions. The present study aimed to investigate the impact of lactate on Müller cell survival and function. Primary mice Müller cells and human Müller cell lines (MIO-M1) were treated with or without lactate (10 or 20 mM) for 2 and 24 hours.
View Article and Find Full Text PDFDysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders.
View Article and Find Full Text PDFUsing the human Müller cell line, MIO-M1, the aim was to study the impact of mitochondrial inhibition in Müller glia through antimycin A treatment. MIO-M1 cell survival, levels of released lactate, mitochondrial function, and glutamate uptake were studied in response to mitochondrial inhibition and glucose restriction. Lactate release decreased in response to glucose restriction.
View Article and Find Full Text PDFIn retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue.
View Article and Find Full Text PDF