Neuroimaging data demonstrate that carpal tunnel syndrome, a peripheral neuropathy, is accompanied by maladaptive central neuroplasticity. To further investigate this phenomenon, we collected magnetoencephalography data from 12 patients with carpal tunnel syndrome and 12 healthy control subjects undergoing somatosensory stimulation of the median nerve-innervated Digits 2 and 3, as well as Digit 5, which is innervated by the ulnar nerve. Nerve conduction velocity and psychophysical data were acquired to determine whether standard clinical measures correlated with brain response.
View Article and Find Full Text PDFMost research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants' performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI - anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking).
View Article and Find Full Text PDFBackground: FMRI studies focus on sub-cortical effects of acupuncture stimuli. The purpose of this study was to assess changes in primary somatosensory (S1) activity over the course of different types of acupuncture stimulation. We used whole head magnetoencephalography (MEG) to map S1 brain response during 15 minutes of electroacupuncture (EA) and acupressure (AP).
View Article and Find Full Text PDFAcupuncture-induced sensations have historically been associated with clinical efficacy. These sensations are atypical, arising from sub-dermal receptors, and their neural encoding is not well known. In this fMRI study, subjects were stimulated at acupoint PC-6, while rating sensation with a custom-built, MR-compatible potentiometer.
View Article and Find Full Text PDFJ Altern Complement Med
July 2008
Acupuncture is an ancient Eastern healing modality with putative therapeutic applications. Unfortunately, little is known about the central mechanisms by which acupuncture may exert its effects. In this study, 16 [corrected] healthy subjects were evaluated with magnetoencephalography (MEG) to map the location and timing of brain activity during low-frequency electroacupuncture (EA) and mechanical, noninsertive, sham acupuncture (SA) given at acupoint PC-6.
View Article and Find Full Text PDFPrevious studies have defined low-frequency, spatially consistent networks in resting fMRI data which may reflect functional connectivity. We sought to explore how a complex somatosensory stimulation, acupuncture, influences intrinsic connectivity in two of these networks: the default mode network (DMN) and sensorimotor network (SMN). We analyzed resting fMRI data taken before and after verum and sham acupuncture.
View Article and Find Full Text PDFAcupuncture is an ancient East Asian healing modality that has been in use for more than 2000 years. Unfortunately, its mechanisms of action are not well understood, and controversy regarding its clinical efficacy remains. Importantly, acupuncture needling often evokes complex somatosensory sensations and may modulate the cognitive/affective perception of pain, suggesting that many effects are supported by the brain and extending central nervous system (CNS) networks.
View Article and Find Full Text PDFThe neurophysiological basis of therapeutic acupuncture is not well understood but is likely to consist of both specific and non-specific (e.g. placebo) effects.
View Article and Find Full Text PDFThe current study used whole-head anatomically constrained magnetoencephalography (aMEG) to spatiotemporally map brain responses while subjects made abstract/concrete judgments on visually presented words. Both word types evoked a similar posterior-to-anterior sequence of cortical recruitment involving occipital, temporal, parietal, and frontal areas from approximately 100 to 900 ms poststimulus. A prominent left temporofrontal N400m was smaller to abstract words, while the right temporal N400m was smaller to concrete words, suggesting that differences may exist in their semantic representation.
View Article and Find Full Text PDFWhole-head magnetoencephalography (MEG) was used to spatiotemporally map the brain response underlying episodic retrieval of words studied a single time following a long delay (approximately 40 min). Recognition following a long delay occurs as a strong, sustained, differential response, within bilateral, ventral, and lateral prefrontal cortex, anterior temporal and medial parietal regions from approximately 500 ms onward, as well as ventral occipitotemporal regions from approximately 700 ms onward. In comparison with previous tasks using multiple repetitions at short delays, these effects were centered within the same areas (anteroventral temporal and ventral prefrontal) but were shifted to longer latencies (approximately 500 ms vs.
View Article and Find Full Text PDFDoes the brain inflect verbs by applying rules, by associative retrieval of the inflected form, or both? We used whole-head magnetoencephalography to spatiotemporally map the brain response underlying verb past-tense inflection. Placing either regular or irregular verbs into the past tense sequentially modulates the bilateral visual, left inferotemporal, posterior superior temporal (Wernicke's area), left inferior prefrontal (Broca's area), and right prefrontal cortices. Although irregular and regular verb inflection evokes similar cortical response patterns, differences in specific frontotemporal regions are observed.
View Article and Find Full Text PDFThe ability of written and spoken words to access the same semantic meaning provides a test case for the multimodal convergence of information from sensory to associative areas. Using anatomically constrained magnetoencephalography (aMEG), the present study investigated the stages of word comprehension in real time in the auditory and visual modalities, as subjects participated in a semantic judgment task. Activity spread from the primary sensory areas along the respective ventral processing streams and converged in anterior temporal and inferior prefrontal regions, primarily on the left at around 400 ms.
View Article and Find Full Text PDFWords have been found to elicit a negative potential at the scalp peaking at approximately 400 ms that is strongly modulated by semantic context. The current study used whole-head magnetoencephalography (MEG) as male subjects read sentences ending with semantically congruous or incongruous words. Compared with congruous words, sentence-terminal incongruous words consistently evoked a large magnetic field over the left hemisphere, peaking at approximately 450 ms.
View Article and Find Full Text PDF