Redox flow batteries are a critical technology for large-scale energy storage, offering the promising characteristics of high scalability, design flexibility and decoupled energy and power. In recent years, they have attracted extensive research interest, with significant advances in relevant materials chemistry, performance metrics and characterization. The emerging concepts of hybrid battery design, redox-targeting strategy, photoelectrode integration and organic redox-active materials present new chemistries for cost-effective and sustainable energy storage systems.
View Article and Find Full Text PDFThe all-solid-state battery (ASSB) is a promising next-generation energy storage technology for both consumer electronics and electric vehicles because of its high energy density and improved safety. Sulfide solid-state electrolytes (SSEs) have merits of low density, high ionic conductivity, and favorable mechanical properties compared to oxide ceramic and polymer materials. However, mass production and processing of sulfide SSEs remain a grand challenge because of their poor moisture stability.
View Article and Find Full Text PDFAqueous redox flow batteries with organic active materials offer an environmentally benign, tunable, and safe route to large-scale energy storage. Development has been limited to a small palette of organics that are aqueous soluble and tend to display the necessary redox reversibility within the water stability window. We show how molecular engineering of fluorenone enables the alcohol electro-oxidation needed for reversible ketone hydrogenation and dehydrogenation at room temperature without the use of a catalyst.
View Article and Find Full Text PDFRedox-active organic molecules have drawn extensive interests in redox flow batteries (RFBs) as promising active materials, but employing them in nonaqueous systems is far limited in terms of useable capacity and cycling stability. Here we introduce azobenzene-based organic compounds as new active materials to realize high-performance nonaqueous RFBs with long cycling life and high capacity. It is capable to achieve a stable long cycling with a low capacity decay of 0.
View Article and Find Full Text PDFOxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger.
View Article and Find Full Text PDFA widely used Lewis acid BF3·Et2O was shown to be capable of acting as an efficient fluorinating agent in an intramolecular aminofluorination reaction of homoallylic amines to provide 3-fluoropyrrolidines mediated by a commercially available hypervalent iodine(III) reagent PhIO at room temperature. A mechanism involving a carbocation intermediate was proposed on the basis of several experimental evidence.
View Article and Find Full Text PDF