NPJ Syst Biol Appl
November 2024
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow.
View Article and Find Full Text PDFCell fate decision is crucial in biological development and plays fundamental roles in normal development and functional maintenance of organisms. By identifying key regulatory interactions and molecules involved in these fate decisions, we can shed light on the intricate mechanisms underlying the cell fates. This understanding ultimately reveals the fundamental principles driving biological development and the origins of various diseases.
View Article and Find Full Text PDFFront Cell Infect Microbiol
October 2024
Background: Probiotic supplementation has a positive effect on endurance exercise performance and body composition in athletes, but the underlying mechanisms remain unclear. Gut microbiota can provide measurable markers of immune function in athletes, and microbial composition analysis may be sensitive enough to detect stress and metabolic disorders caused by exercise.
Methods: Nineteen healthy active amateur marathon runners (15 male and 4 female) with a mean age of 29.
In recent years, the rotational Doppler effect (RDE) has been widely used in rotational motion measurement. However, the performance of existing detection systems based on the RDE are generally limited by the drastic reduction of signal-to-noise ratio (SNR) due to the influence of atmospheric turbulence, partial obscuration of the vortex beam (VB) during propagation, and misalignment between the optical axis of VB and the rotational axis of the object, which poses a challenge for practical applications. In this paper, we proposed a coherent detection method of the RDE measurement based on triple Fourier transform.
View Article and Find Full Text PDFThe rotational Doppler effect of the vortex beam is a recently emerged promising application of the optical vortex with orbital angular momentum. In this paper, we combine the method of the micro-Doppler effect of the traditional radar and the rotational Doppler effect of the vortex beam and propose an approach of rotational micro-Doppler effect, realizing the simultaneous measurement of spin and precession. We firstly analyze the rotational micro-Doppler characteristic introduced by precession under the illuminating of vortex beam and calculate the rotational micro-Doppler parameters related to the spin and precession.
View Article and Find Full Text PDFVortex beams (VBs) with orbital angular momentum have shown great potential in the detection of transverse rotational motion of spatial targets which is undetectable in the classical radar scheme. However, most of the reported rotational Doppler measurements based on VBs can only be realized under ideal experimental conditions. The long-range detection is still a challenge.
View Article and Find Full Text PDFMotivation: Cell fate transitions are common in many developmental processes. Therefore, identifying the mechanisms behind them is crucial. Traditionally, due to complexity of networks and existence of plenty of kinetic parameters, dynamical analysis of biomolecular networks can only be performed by simultaneously perturbing a small number of parameters.
View Article and Find Full Text PDFIn this paper, we develop a network-based methodology to investigate the problems related to matrix stability and bifurcations in nonlinear dynamical systems. By matching a matrix with a network, i.e.
View Article and Find Full Text PDFCell fate decisions and transitions are common in almost all developmental processes. Therefore, it is important to identify the decision-making mechanisms and important individual molecules behind the fate decision processes. In this paper, we propose an interpretable strategy based on systematic perturbation, unsupervised hierarchical cluster analysis (HCA), machine learning (ML), and Shapley additive explanation (SHAP) analysis for inferring the contribution and importance of individual molecules in cell fate decision and transition processes.
View Article and Find Full Text PDFIn most rotational Doppler effect (RDE) measurements, the optical axis and the rotating axis of the object are required to be aligned. However, the condition is very difficult to achieve in practical applications of rotation detection, which seriously affects the received signal. Moreover, it is necessary to focus the beam on the rotating axis of a rotating surface in applications ranging from manufacturing to physical experiments.
View Article and Find Full Text PDFAs the α-subunit of the high-affinity receptor for the Fc portion of immunoglobulin E (FcεRIα), FcεRIα plays a central role in IgE-mediated allergic disorders and in the immunity and immunopathology of some parasitic infections. FcεRIα is specifically expressed on basophils and mast cells, but the mechanism that controls FcεRIα expression in these cells is poorly understood. In this study, we found that the natural antisense transcript (NAT) of FcεRIα (-AS) is co-expressed with the sense transcript (-S) in both interleukin (IL)-3-induced FcεRIα-expressing cells and in the high FcεRIα-expressing cell line MC/9.
View Article and Find Full Text PDFSci Total Environ
November 2022
Highly oxygenated organic molecules (HOM) formed by the autoxidation of α-pinene initiated by OH radicals play an important role in new particle formation. It is believed that the accretion products, ROOR´, formed by the self- and cross-reaction of peroxy radicals (RO + R'O reactions), have extremely low volatility and are more likely to participate in nucleation. However, the mechanism of ROOR´ formation has not been fully demonstrated by experiment or theoretical calculation.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are involved in the progression of various diseases, including lupus nephritis. Hsa_circ_0010957 is reported to be dysregulated in lupus nephritis, but the exact function of this circRNA is unknown. This research aims to study the function and mechanism of circRNA hsa_circ_0010957 in a lipopolysaccharide (LPS)-induced cellular model of lupus nephritis.
View Article and Find Full Text PDFAs a frequently occurring infectious disease mainly caused by Candida albicans, vulvovaginal candidosis (VVC) affects more than 100 million women worldwide every year. Multiple factors that influence C. albicans colonisation have been linked to the incidence of VVC, including high levels of circulating oestrogen due to pregnancy, the use of oral contraceptives, and hormone replacement therapy.
View Article and Find Full Text PDFAluminium hydroxide (alum), the most widely used adjuvant in human and animal vaccines, has long been known to promote T helper type 2 (Th2) responses and Th2-associated humoral responses, but the mechanisms have remained poorly understood. In this study, we explored whether alum is able to directly modulate antigen-presenting cells to enhance their potency for Th2 polarization. We found that alum treatment of dendritic cells failed to show any Th2-promoting activities.
View Article and Find Full Text PDF